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Abstract

Background: Estrogen is formed by the enzyme aromatase (CYP19A1) and signals via three identified receptors ERa
(ESR1), ERB (ESR2), and the G protein-coupled estrogen receptor (GPER). Understanding the relative contribution of
each receptor to estrogenic signaling may elucidate the disparate effects of this sex hormone across tissues, and recent
developments in PCR technology allow absolute quantification and direct comparison of multiple targets. We
hypothesized that this approach would reveal tissue- and sex-specific differences in estrogen receptor mRNA.

Methods: ESR1, ESR2, GPER, and CYP19A1 were measured in four cardiovascular tissues (heart, aorta, kidney,
and adrenal gland), three brain areas (somatosensory cortex, hippocampus, and prefrontal cortex), and reproductive
tissues (ovaries, mammary gland, uterus, testes) from six male and six female adult Sprague-Dawley rats.

Results: GPER mRNA expression was relatively stable across all tissues in both sexes, ranging from 5.49 to 113 copies/
ng RNA, a 21-fold difference. In contrast, ESR1/ESR2 were variable across tissues although similar within an organ
system. ESR1 ranged from 4.46 to 614 copies/ng RNA (138-fold difference) while ESR2 ranged from 0.154 to
83.1 copies/ng RNA (540-fold). Significant sex differences were broadly absent except for renal ESR1 (female
206 vs. male 614 copies/ng RNA, P < 0.0001) and GPER (62.0 vs. 30.2 copies/ng RNA, P < 0.05) as well as gonadal GPER
(549 vs. 475 copies/ng RNA, P < 0.01), ESR2 (83.1 vs. 0.299 copies/ng RNA, P < 0.01), and CYP19A1 (322 vs. 7.18 copies/
ng RNA, P < 0.01). Cardiovascular tissues showed a predominance of ESR1, followed by GPER. In contrast, GPER was the
predominant transcript in the brain with similarly low levels of ESRT and ESR2. CYP19A1 was detected at very low levels
except for reproductive tissues and the hippocampus.

Conclusion: While the data indicates a lack of sex differences in most tissues, significant differences were found in the
range of receptor gene expression across tissues as well as in the receptor profile between organ systems. The data
provide a guide for future studies by establishing estrogen receptor expression across multiple tissues using absolute
PCR quantification. This knowledge on tissue-specific estrogen receptor profiles will aid the development of hormonal

therapies that elicit beneficial effects in specific tissues.
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Background

The nuanced relationship that exists between normal
physiology, endogenous estrogens, and menopausal hor-
mone therapy (MHT) is highlighted by discrepancies in
both basic and clinical research. The alarming publica-
tion of deleterious estrogenic effects associated with
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MHT in the large randomized clinical trial the Women’s
Health Initiative conflict with numerous basic studies
performed in animals as well as clinical observational
studies, such as the Nurse's Health Study which demon-
strate beneficial and cardioprotective effects of estrogen
[1, 2]. While MHT is effective for relieving menopausal
symptoms, its impact on cardiovascular health and asso-
ciated risks remain an area of dispute.

Many questions still surround the interaction of estro-
gens and their identified receptors (ERs) ERa, ERp, and
more recently the G protein-coupled estrogen receptor
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(GPER). The precise signaling actions of ERs and associ-
ated proteins are most likely dependent on the relative
expression levels of all three ERs, or the ER expression
profile, at the specific site of action. Tissue-specific and
sexually dimorphic ER expression patterns may contrib-
ute to the differential effects of estrogen as well as the
protective benefits observed in females but not in males.
Moreover, ER profiles may aid the development of
menopausal therapies that elicit only the desired effects.

Previously existing methodologies for transcript quan-
tification, including quantitative real-time PCR (qPCR)
and reverse transcription qPCR (RT-qPCR), estimate re-
sults based on an experimentally generated standard
curve. This method limits accuracy when directly com-
paring data between discrete runs and tissue types, be-
cause standard curves are not identical across all
reactions [3, 4]. Furthermore, levels of popular house-
keeping genes including p-actin and GAPDH, which are
used as internal controls in RT-qPCR, are not consistent
among different tissues [5], leading to difficulty when
comparing target gene levels in multiple tissues. In con-
trast, droplet digital PCR (ddPCR) is an established and
validated method that allows direct comparison of mul-
tiple target sequences from discrete experiments due to
absolute quantification [3, 6-8]. Utilizing ddPCR, the
current study established the unique ER expression pro-
file in 10 tissues from adult rats.

Methods

Tissue harvesting

All procedures were conducted in accordance with the
National Institutes of Health Guide for the Care and Use
of Laboratory Animals and approved and monitored by
the Tulane Institutional Animal Care and Use Committee.
Sprague-Dawley rats (six female, six male) arrived from
Envigo at 12-14 weeks of age (RGD Cat# 737903,
RRID:RGD_737903). After 1 week of acclimation, tissues
were harvested and immediately immersed in 10 ul RNA-
later (QIAGEN Cat# AM7020, RRID:SCR_008539) per
1 mg of tissue to preserve RNA integrity. Larger tissues
were cut into slices less than 0.5 c¢cm thick in accordance
with the manufacturer’s instructions. Tissues were stored
for 24 h at 4 °C before being archived at — 20 °C.

Cell culture

Rat embryonic A7r5 aortic smooth muscle cells (ATCC
Cat# CRL-1444, RRID:CVCL _0137) were cultured in
10 cm dishes with DMEM (Thermo Fisher Scientific
Cat# 11330057, RRID:SCR_008452) containing 10% FBS
(Sigma Cat# F6178, RRID:SCR_008988). After reaching
approximately 80% confluency, media was replaced with
DMEM containing 0.5% charcoal-stripped FBS (Sigma
Cat# F6765) for 24 h to reduce to influence of hormones
in the serum. Cells were washed, pelleted, resuspended
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in a small volume of PBS, then mixed with 5-10 vol-
umes of RNAlater, and stored until analysis.

RNA extraction

RNA extraction was accomplished using the RNeasy
MiniKit (QIAGEN, Cat# 74106) according to the manu-
facturer’s protocol. Purity and concentration of RNA
was determined by a NanoDrop™ 2000 Spectrophotom-
eter (Thermo Fisher Scientific) using a previously de-
scribed method [9]. Samples with a 260/280 ratio greater
than 1.8 were used in the study.

Droplet digital PCR

ddPCR was accomplished using a previously described
method [6, 10]. Briefly, RNA was combined with
One-Step RT-ddPCR Advanced Kit for Probes (Bio-Rad
Laboratories, Cat# 1864021, RRID:SCR_008426) and the
following PrimePCR Primers (all from Bio-Rad Laborator-
ies): Gper, Rat (RefSeq: NM_133573, Fluorophore: FAM,
Unique Assay ID: dRnoCPE5151056); Esrl, Rat (RefSeq:
NM_012689, Fluorophore: HEX, Unique Assay ID:
dRnoCPE5176827); Esr2, Rat (RefSeq: NM_012754, Fluor-
ophore: FAM, Unique Assay ID: dRnoCPE5175914); and
Cypl19al, Rat (RefSeq: NM_017085, Fluorophore: HEX,
Unique Assay ID: dRnoCPE5174813). Only two fluores-
cent signals were read for each sample (GPER-FAM/
ESR1-HEX), and the same RNA sample was used to read
the other two genes on a separate run (ESR2-FAM/
CYP19A1-HEX). The reaction mixture was fractionated
into more than 10,000 individual 1 nl droplets by oil
emulsion microfluidics. Droplets were analyzed via the
Bio-Rad QX200 droplet reader and QuantaSoft software
and converted to copies/ng RNA based on the RNA con-
centration and the total volume added to the reaction.
Samples were rerun or excluded if they had too many
positive or negative droplets (does not satisfy Poisson sta-
tistics), Quantasoft Quality Scores below 0.85, or less than
10,000 droplets.

Statistical analysis

GraphPad Prism (RRID:SCR_002798) was utilized for
statistical analysis. Sex differences in transcript expres-
sion across tissues were analyzed using 2-way ANOVA
with factors of sex and tissue followed by Sidak’s mul-
tiple comparisons test. ER mRNA expression profiles
within each tissue were analyzed via two-way ANOVA
with factors of gene and sex followed by Sidak’s multiple
comparisons test. Cohen’s d was calculated as the differ-
ence between two means divided by the average stand-
ard deviation. For tissues found in only one sex
(mammary gland and uterus) as well as for cell experi-
ments, significant differences in gene expression were
determined using one-way ANOVA and Sidak’s multiple
comparison test.
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Results
An overview of all experimental data gathered from
ddPCR analysis of GPER, ESR1, ESR2, and aromatase
from the isolated total RNA of 10 cardiovascular, brain,
and reproductive tissues is presented as a heatmap
(Fig. 1).

We next analyzed each gene individually in order to
determine the effect of sex on estrogen receptor as well
as the enzyme aromatase across all tissues (Fig. 2).
Mammary and uterine samples were excluded since they
could not be paired across sex. For GPER, there was no
main effect of sex but tissue and the interaction were
significant (Fig. 2a, Table 1). GPER was significantly
lower in the ovary (5.5+ 1.5 copies/ng RNA) and male
kidneys (30 + 23 copies/ng RNA) in comparison with tis-
sues of the opposite sex (testes 48 + 16 copies/ng RNA
and female kidneys 62 + 36 copies/ng RNA). A main ef-
fect was found for sex, tissue, and the interaction when
analyzing expression of ESR1, ESR2, and CYP19Al
(Fig. 2b—2d, Table 1). Opposite of the sex difference in
renal GPER, renal ESR1 was significantly greater in
males. Also opposite to the predominance of GPER in
the testes, ESR2, and CYP19A1 expression was signifi-
cantly greater in ovaries.

Next, we determined the estrogen receptor profile for
each tissue, grouped by function. Due to nearly un-
detectable levels of CYP19A1 except in reproductive tis-
sues, this gene was not included in the analysis of
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cardiovascular or brain ER profiles. Cardiovascular tis-
sues (adrenal, aorta, heart, and kidney) showed a pre-
dominance of ESR1, followed by GPER (Fig. 3 and
Table 2). ESR2 had near undetectable levels in all cardio-
vascular tissues analyzed. In the adrenal gland and heart,
but not the aorta or kidney, both male and female ani-
mals had significantly more ESR1 relative to GPER and
ESR2. There was a significant effect of sex on gene ex-
pression in all tissues excerpt the heart. Higher levels of
ESR1 were noted in the adrenal glands of females in
comparison with males, but lower ESR1 was found in
the female aorta and kidney.

In contrast to data from cardiovascular tissues, GPER
was the predominant transcript in the three selected brain
regions (prefrontal cortex, somatosensory cortex, and
hippocampus; Fig. 4 and Table 3). ESR1 and ESR2 dis-
played similarly low levels in the brain in both females
and males. In addition, there was no main effect of sex in
the brain. GPER was expressed significantly higher than
ESR1 and ESR2 in female hippocampus, female and male
prefrontal cortex, and female somatosensory cortex. In the
male hippocampus and somatosensory cortex, GPER was
significantly higher than only ESR2.

The ER profiles of reproductive tissues (gonads, mam-
mary gland, and uterus) were dominated by significantly
greater ESR1 expression relative to GPER and ESR2
(Fig. 5 and Table 4). With the exception of the ovaries
and uterus, CYP19A1 expression was nearly absent. In
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Fig. 1 Heatmap of ddPCR results for GPER, ESR1, ESR2, and CYP19A1 in 10 tissue types from female and male Sprague-Dawley rats
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the ovary, CYP19A1 expression was equally as high as
ESR1. Data from the testes did not reach the threshold
of significance, though ESR1 mRNA tended to be higher
than the three other surveyed genes.

Since all of the samples tested thus far were whole
tissue homogenates, we next determined the ER pro-
file in A7r5 cells, a rat aortic smooth muscle cell line
frequently used in our lab (Table 5). Since this cell

line originated from rat embryos, we assumed that
the sex of the cells was a combination of male and
female. GPER expression was predominant in this cell
type, with similarly low levels of ESR1, ESR2, and
CYP19A1 (Fig. 6).

In order to get a more thorough picture of the ER pro-
file across tissues, Fig. 7 presents the normalized data
for the three estrogen receptors across all samples.
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Table 1 Statistical analysis of data presented in Fig. 2. Post hoc results are only shown for tests which reached statistical significance

(P<0.05)
DF eta squared Cohen’s d F (DFn, DFd) t P value
GPER (two-way)
Interaction 7 8.56 F(7,77)=4.08 P =0.0007
Tissue 7 67.1 F(7,77)=320 P <0.0001
Sex 1 0.0137 F(1,77)=00459 P =08310
>Kidney F vs. M 77 1.07 =296 P =0.0327
>Gonads F vs. M 77 —4.75 =372 P =0.0030
ESRT (two-way)
Interaction 7 20.2 F(7,79)=192 P <0.0001
Tissue 7 65.5 F (7,79 =623 P <0.0001
Sex 1 191 F(1,79=127 P =0.0006
>Kidney F vs. M 79 -3.08 =118 P < 0.0001
ESR2 (two-way)
Interaction 7 374 F(7,78)=186 P <0.0001
Tissue 7 348 F (7,78 =173 P < 0.0001
Sex 1 5.07 F(1,78)=176 P <0.0001
>Gonads F vs. M 78 357 t=122 P =0.0030
CYP19AT (two-way)
Interaction 7 263 F(7,78)=7.06 P <0.0001
Tissue 7 284 F(7,78)=762 P <0.0001
Sex 1 367 F(1,78) =689 P =0.0104
>Gonads F vs. M 78 2.19 t=122 P =0.0030

Discussion
The current study quantified and compared mRNA for
the three known estrogen receptors and the enzyme aro-
matase in 10 tissues using a previously validated PCR
technique that allows direct quantification of absolute
transcript number. The data indicates a surprising lack
of sexual dimorphism in key players for the primary fe-
male sex hormone. However, significant differences were
noted in the range of receptor expression across tissues
as well as the predominant estrogen receptor in each
organ system. The data provide a guide for future stud-
ies by establishing the absolute amounts of estrogen re-
ceptor mRNA in a significant number of target organs.
Sex differences were broadly absent except in the kid-
neys (GPER and ESR1) and gonads (GPER, ESR2, and
CYP19A1). The greater expression of renal ESR1 in male
versus female Sprague-Dawley rats was also detected by
others using the branched DNA signal amplification
assay [11]. The direction of this sexual dimorphism is
surprising considering that deletion of this gene in mice
increases proteinuria and glomerular damage in females
but not in males [12]. This same study found that gen-
etic deletion of ESR2 does not impact renal health and
reflects the nearly undetectable levels of this transcript
in kidneys from both sexes in the current study.

Similarly, kidneys from adult AKR mice lack ESR2 and
have greater ESR1 in males compared with females [13].
Opposite of our ESR1 results, renal GPER was greater in
females than males, which may compensate for lower
ESR1 since its activation protects against renal damage
in female rats [14]. The gonads showed the most sexual
dimorphism, with greater ESR2 and CYP19A1 but less
GPER in ovaries versus testes. Higher levels of ovarian
ESR2 may underlie the more prominent reproductive
phenotype in females with ESR2 deletion in comparison
with males [15]. The lack of a sex difference in ESR1 be-
tween the testes and ovary was surprising considering
the obvious differences in anatomy as well as sex hor-
mones. Analysis by qPCR in zebrafish found that in con-
trast to our findings, ESR1 is significantly lower in the
testes versus the ovaries [16]. However, their findings of
greater CYP19A1 in female fish gonads supports our re-
sults and is most likely related to the more important
role for this enzyme in sexual differentiation of females
in comparison with males [17].

GPER was relatively stable across all tissues of both
sexes, ranging from 5.5 copies/ng RNA (ovary) to 113
copies/ng RNA (prefrontal cortex), an approximately
20-fold difference. This finding is consistent with current
literature that describes GPER expression as ubiquitous



Hutson et al. Biology of Sex Differences (2019) 10:4 Page 6 of 13
a Adrenal b Aorta
200 200 W GPER
< < * M ESR1
Z 450 * Z 4504 M ESR2
o " o
o) T o) *
< 100- < 1004
2 2
g 501 g 501
(] (]
%, %*,00 o o
0- 0-
females males females males
c Heart d Kidney
60+ . * 800+ .
< - < T
P Z 600-
40 4
(@] (o]
% % 400-
= 20- — *
oy g 200 =
(3] (3}
*,00 *,00 o o
0- 0-
female male females males
Fig. 3 Estrogen receptor profiles in cardiovascular tissues. (a) Adrenal gland, (b) Aorta, (c) Heart, and (d) Kidney. Each tissue was compared using
two-way ANOVA (sex x gene) with Sidak's multiple comparisons test, *P < 0.05 vs. GPER, P < 0.05 vs. ESR1

[18, 19]. In contrast, ERa and ERP were variable across
all tissues although relatively stable within each organ sys-
tem. ESR1 displayed a range of 4.5 (somatosensory cortex)
to 614 (kidney) copies/ng RNA, a fold change of ~ 136
while ESR2 ranged from 0.15 (adrenal gland) to 83 (ovary)
copies/ng RNA or ~550-fold. The stability of GPER
across all tissues of a given organ system as opposed to
the more variable expression of ERa and ERP may be indi-
cative of the rapid signaling role of GPER [20-22]. In con-
trast, the transcriptional role of nuclear ERs may
necessitate a more tailored pattern of receptor expression
[23, 24]. GPER-mediated rapid signaling is demonstrated
in tissues such as blood vessels, where it induces vasodila-
tion via nitric oxide (NO) and cAMP signaling [20] and
impacts calcium mobilization [25]. GPER activation also
increases mitochondrial calcium retention in the heart
within minutes [26] and decreases central control of food
intake within an hour [27], both of which demonstrate the
importance of this non-genomic pathway. The greater
variability and tissue specificity for ESR1 and ESR2 may
be important for regulating the large number of genes that
are important for growth and reproduction. Genomic
signaling by ERa and ERp involves direct binding to
estrogen-responsive elements, transcription factors, or

cofactor complexes that regulate numerous genes [28].
This transcriptional role may necessitate a more tailored
pattern of receptor expression [23, 24].

In cardiovascular tissues, ESR1 predominated over
both ESR2 and GPER. The magnitude of ESR1 domin-
ance was greatest in the kidney, where ESR1 was three
times higher than GPER in females and sixfold greater
in males. In the heart, ESR1 and GPER copy number
was the most similar with a difference of 1.4-fold and
1.9-fold in males and females, respectively. Higher ex-
pression of GPER in the heart is consistent with findings
of improved function as well as reduced remodeling in
response to administration of the GPER agonist G-1
[29]. Studies using cardiomyocyte-specific deletion of
GPER indicate that this cell type is likely the most im-
portant target for estrogenic actions mediated by GPER
[30, 31]. ESR2 was nearly undetectable in the heart as
well as all cardiovascular tissues, supporting other stud-
ies showing a lack of ESR2 in cardiac tissue and isolated
cardiomyocytes from both sexes [32] as well as in the
adult mouse kidney [13]. Since studies implicate this in
attenuating the hypertrophic response to pressure over-
load in females [33], cardiac ESR2 expression may be in-
duced in response to tissue injury or disease.
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Table 2 Statistical analysis of data presented in Fig. 3. Post hoc results are only shown for tests which reached statistical significance

(P<0.05)
DF eta squared Cohen’s d F (DFn, DFd) t P value
Adrenal (two-way)
Interaction 2 1.309 F(2,29)=3.298 P=00512
Sex 1 0.8823 F(1,29)=4445 P =0.0438
>ESRT: F vs. M 29 1.24 t=3347 P =0.0068
gene 2 91.78 F (2,29 =2312 P <0.0001
>F: GPER vs. ESR1 29 -9530 t=13.15 P <0.0001
>F: GPER vs. ESR2 29 8580 t=3.079 P =00135
>F: ESR1 vs. ESR2 29 15.81 t=16.23 P < 0.0001
>M: GPER vs. ESR1 29 — 4442 t=1017 P <0.0001
>M: GPER vs. ESR2 29 4313 t=2591 P =0.0438
>M: ESR1 vs. ESR2 29 7.654 t=1229 P <0.0001
Aorta (two-way)
Interaction 2 5.10 F (2, 29) =687 P =0.0036
Sex 1 277 F,29=747 P =0.0106
>SESR1:F vs. M 29 —4.60 t =466 P =0.0002
Gene 2 81.0 F (2,29 =109 P <0.0001
>F: GPER vs. ESR1 29 —272 t=6.27 P <0.0001
>F: ESR1 vs. ESR2 29 333 =734 P < 0.0001
>M: GPER vs. ESR1 29 -731 t=108 P <0.0001
>M: ESR1 vs. ESR2 29 8.74 t=114 P < 0.0001
Heart (two-way)
Interaction 2 0.769 F (2, 30)=0.804 P =0457
Sex 1 0.0665 F(1,30)=0.139 P=0712
Gene 2 84.8 F(2,30)=887 P <0.0001
>F: GPER vs. ESR1 30 —287 t=476 P =0.0001
>F: GPER vs. ESR2 30 4.29 t =488 P < 0.0001
>F: ESR1 vs. ESR2 30 17.2 t =964 P <0.0001
>M: GPER vs. ESR1 30 -129 t=301 P=00157
>M: GPER vs. ESR2 30 7.2 t=6.09 P <0.0001
>M: ESRT vs. ESR2 30 6.05 t=9.10 P <0.0001
Kidney
Interaction 2 18.6 F (2, 30)=0.804 P <0.0001
Sex 1 7.30 F(1,30)=0.139 P =0.0002
>ESRT: F vs. M 30 —-3.08 t=8.09 P <0.0001
Gene 2 62.3 F(2,30)=887 P <0.0001
>F: GPER vs. ESR1 30 —281 t =476 P=0023
>F: ESR1 vs. ESR2 30 6.18 t=964 P =0.0009
>M: GPER vs. ESR1 30 -525 t=301 P <0.0001
>M: ESRT vs. ESR2 30 6.16 t=9.10 P <0.0001

In the three brain areas analyzed, prefrontal cortex, laboratory reveals a similar expression pattern in the
somatosensory cortex, and hippocampus, GPER was somatosensory cortex of Thyl female mice, where
dominant whereas ESR1 was about 75% lower and simi-  sensory-evoked structural plasticity positively correlates
lar to levels of ESR2. Previous data generated in our with high estrogen stages of the estrus cycle [34]. These
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results suggest a conserved role for rapid estrogen sig-
naling via GPER in telencephalic brain regions. In
addition, GPER reduces inflammatory markers in pri-
mary cultures of microglial cells when treated with the
selective agonist G1, indicating a neuroprotective role
for this receptor [35]. Although expression of ESR2 was
much lower than the other receptors throughout the
study, the amount found in brain was greater relative to
all other tissues except the ovaries, suggesting an im-
portant role in nervous tissue. In this regard, ESR2, but
not ESR1, has been recently found responsible for the
modulation and promotion of synaptogenesis in cortical
neurons in vitro [36] and in vivo [37], indicating a cru-
cial role of this receptor in brain function, especially for
memory and cognition. Furthermore, the relative ESR2/
ESR1 expression ratio is increasingly appreciated as im-
portant in memory performance and cognitive decline
with respect to age [38].

ESR1 was the dominant gene in gonadal tissues of
both sexes, which is in accordance with data establishing
it as a vital receptor in animal fertility [39]. Second to

ESR1, males had significant levels of GPER but low
ESR2, while females exhibited the inverse relationship.
Higher levels of ESR2 versus GPER in the ovary and
uterus supports the presence of smaller litters in ESR2
knockout animals [15, 39] and the lack of any reproduct-
ive changes in GPER knockout mice [40, 41] or rats
treated with the GPER agonist [42]. Opposite to females,
genetic deletion of ESR2 in males does not alter fertility
[39] and correlates with our data showing low receptor
levels in the testes. Despite the higher expression of
GPER in males, genetic deletion of this receptor is
reported to not alter fertile or function of the
hypothalamic-pituitary-gonadal axis [40, 41]. Since the
ovaries are the primary source of circulating estrogen,
it was not surprising that CYP19A1l expression was
detected at very high levels in this tissue. The low
levels in most other tissues (except testes and hippo-
campus) are consistent with previous reports of extra-
gonadal CYP19A1 expression only in the brain and
adipose tissue, which are also major sites for estrogen
production [43].
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Table 3 Statistical analysis of data presented in Fig. 4. Post hoc results are only shown for tests which reached statistical significance

(P<0.05)
DF eta squared Cohen’s d F (DFn, DFd) t P value
Hippocampus (two-way)
Interaction 2 5.06 F (2,29 =240 P=0.109
Sex 1 1.44 F(1,29=137 P =0252
Gene 2 60.2 F (2,29 =285 P <0.0001
>F: GPER vs. ESR1 29 245 t=477 P =0.0001
>F: GPER vs. ESR2 29 4.00 =667 P <0.0001
>M: GPER vs. ESR2 29 3.07 t=403 P =0.0011
Prefrontal cortex (two-way)
Interaction 2 0.223 F(2,30)=0517 P =0601
Sex 1 0.276 F(1,300=128 P =0.266
Gene 2 93.0 F(2,30)=216 P <0.0001
>F: GPER vs. ESR1 30 6.75 t=120 P <0.0001
>F: GPER vs. ESR2 30 9.21 t=138 P <0.0001
>M: GPER vs. ESR1 30 7.05 t=123 P < 0.0001
>M: GPER vs. ESR2 30 754 t=127 P <0.0001
Somatosensory cortex (two-way)
Interaction 2 0.768 F (2, 29=184 P=0177
Sex 1 0.0811 F(1,29)=0.389 P =0.538
Gene 2 914 F (2,29 =219 P <0.0001
>F: GPER vs. ESR1 29 6.84 t=4.767 P =0.0001
>F: GPER vs. ESR2 29 7.52 t=6.668 P <0.0001
>M: GPER vs. ESR2 29 830 t=4.031 P =0.0011

The most commonly used molecular assay in bio-
logical sciences is currently qPCR [44]. This technique
utilizes nucleic acid primers for a gene of interest, a
fluorescent reporter dye, putative formulae, or a stand-
ard curve of known nucleic acid concentrations in order
to approximate the concentration of transcript by com-
paring fluorescence intensity over time [45]. A baseline
value of background fluorescence is established, and by
determining the cycle number at which fluorescence

surpasses background levels one can establish the start-
ing concentration of the target sequence. ddPCR was de-
veloped to more accurately and reproducibly quantify
nucleic acids without the use of standard curves or refer-
ence genes [3]. Unlike qPCR, ddPCR accomplishes abso-
lute quantification by partitioning the starting materials
into thousands of nanoliter droplets suspended in an oil
emulsion containing one or zero target sequences. After
amplification by traditional PCR, droplets are quantified

a Gonads b Mammary c Uterus
500+ B 600+ * 800+
*, Il GPER
5 300 * & 4004 & M ESR2
2 T g £ 4001 B CYP19A1
a a T
2 200 T 2 2
o o S 200+ S
8 100- 8 9 200 )
a (04
0 0 2 0 —
females males females females
Fig. 5 Estrogen receptor profiles in reproductive tissues. (a) Gonads, (b) Mammary gland, and (c) Uterus. Each tissue was compared using two-
way ANOVA (sex x gene) with Sidak's multiple comparisons test, *P < 0.05 vs. GPER, ®P < 0.05 vs. ESR1, *P < 0.05 vs. ESR2
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Table 4 Statistical analysis of data presented in Fig. 5. Post hoc results are only shown for tests which reached statistical significance

(P<0.05)
DF eta squared Cohen’s d F (DFn, DFd) t P value
Gonads (two-way)
Interaction 3 17.8 F (3, 38) =5.33 P =0.0037
Sex 1 122 F(1,38=110 P =0.0020
>CYP19AT: F vs. M 38 2.19 t=495 P < 0.0001
gene 3 254 F (3,38 =762 P =0.0004
>F: GPER vs. ESR1 38 —-601 t=382 P =0.0029
>F: GPER vs. CYP19A1 38 -220 t=497 P < 0.0001
>F: ESR2 vs. CYP19A1 38 - 144 =375 P =0.0035
Mammary (one-way)
Gene 3 64.5 F(3,20)=1212 P <0.0001
>F: GPER vs. ESR1 20 —-223 =413 P =0.0031
>M: GPER vs. ESR1 20 298 t=5.163 P =0.0003
>M: GPER vs. ESR2 20 3.00 t=518 P =0.0003
Uterus (one-way)
Gene 3 92.2 F (3,8 =317 P <0.0001
>F: GPER vs. ESR1 8 —6.66 t=801 P =0.0003
>M: GPER vs. ESR1 8 6.80 t=814 P =0.0002
>M: GPER vs. ESR2 8 4.94 t=770 P =0.0003

as positive or negative, and the starting concentration of
target can be calculated using Poisson statistics. Because
ddPCR is based on analysis of a binary end state, it is far
more resistant to contamination and fluctuations in PCR
efficiency, both of which drastically affect results ob-
tained via qPCR [4]. A comparison of RT-qPCR and
ddPCR in quantifying strains of influenza found that
ddPCR was 30-fold more sensitive than RT-qPCR and
results obtained by ddPCR were more precise [8], sup-
porting conclusions in other investigations [3, 46]. Over-
all, several studies find ddPCR to be more reliable,
reproducible, sensitive, and consistent when compared
to traditional qPCR methods with the added benefit of
not requiring standard curves or normalization to a ref-
erence gene [3, 4, 8, 47].

One limitation of utilizing tissue homogenates is a het-
erogeneous mixture of differentiated cell types. Analysis
of mRNA from the rat aortic smooth muscle cell A7r5
cell line resulted in a completely different ER profile

than that obtained using the whole rat aorta, supporting
the idea that each cell or subpopulation of cells may
have an individual expression profile. The cell versus
tissue data shows a similar paucity of ESR2, but GPER
rather than ESR1 predominates implying variable re-
sponses to estrogens within the tissue and a need for
cell-specific expression profiles. Other studies also show
that gene expression profiles show low correlation with
cell lines [48], indicating that different environments
may have a strong influence on gene expression within
the same tissue type.

Additional limitations are that protein levels may not
correlate with mRNA levels or patterns, and gene ex-
pression does not take into account the presence of mul-
tiple splice variants for estrogen receptors [49]. In fact,
Irsik et al. found that ERf3 protein is expressed at similar
levels in the mouse kidney and ovary, while we found
that ER8 mRNA was more than 400 times lower in the
kidney versus ovary. These disparate findings suggest

Table 5 Statistical analysis of data presented in Fig. 6. Post hoc results are only shown for tests which reached statistical significance

(P<0.05)
DF eta squared Cohen’s d F (DFn, DFd) t P value
Rat aortic SMC (one-way)
Gene 3 88.1 F(3,31)=7652 P <0.0001
>F: GPER vs. ESR1 31 452 t=1209 P < 0.0001
>F: GPER vs. ESR2 31 590 t=1151 P <0.0001
>F: GPER vs. CYP19A1 31 6.60 t=1257 P < 0.0001
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that either translation to protein does not follow the pat-
terns seen here for mRNA or that there is a lack of spe-
cificity of currently available antibodies. Indeed, care
needs to be taken to validate all antibodies against a con-
trol sample where the protein of interest has been de-
leted [50]. Nevertheless, the method used here is to our
knowledge the best method for quantification and com-
parison of four genes of interest in different tissues.

Conclusions

In conclusion, this study revealed a wide range of ER ex-
pression across tissues, with surprisingly few sex differ-
ences. As illustrated in Fig. 7, which represents the data
as parts of a whole, ER profiles were relatively consistent
across tissues of the same organ system, with large dif-
ferences in the ER profile between systems. The relative
stability of GPER mRNA across all tissues as opposed to
the variable expression of ESR1 and ESR2 is perhaps
best explained by the differing role that GPER plays in
relation to the nuclear ERs. Consistent expression of
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Fig. 7 Estrogen receptor profiles for all tissues expressed as a percent of total receptor expression
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GPER allows all tissues to respond rapidly and concert-
edly to estrogen signaling, while the differential expres-
sion of ESR1 and ESR2 allows for tissue-specific
transcriptional regulation in response to the same signal.
The predominance of GPER in brain and ESR1 in car-
diovascular tissues, and moreover the relative ratio be-
tween these receptors may serve to further tailor the
response to estrogen in different tissues. Future studies
will examine the impact of aging and disease on
tissue-specific ER profiles. Overall, this work is indicative
of the complex nature of ER research and the nuances
that remain to be elucidated. Moreover, this study pro-
vides a contextual framework to guide future work on
ER roles in specific organs.
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