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Bariatric surgery emphasizes biological sex
differences in rodent hepatic lipid handling
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Abstract

Background: Eighty percent of patients who receive bariatric surgery are women, yet the majority of preclinical
studies are in male rodents. Because sex differences drive hepatic gene expression and overall lipid metabolism, we
sought to determine whether sex differences were also apparent in these endpoints in response to bariatric surgery.

Methods: Two cohorts of age-matched virgin male and female Long-Evans rats were placed on a high fat diet for 3
weeks and then received either Sham or vertical sleeve gastrectomy (VSG), a surgery which resects 80% of the stomach
with no intestinal rearrangement.

Results: Each sex exhibited significantly decreased body weight due to a reduction in fat mass relative to
Sham controls (p < 0.05). Microarray and follow-up qPCR on liver revealed striking sex differences in gene expression
after VSG that reflected a down-regulation of hepatic lipid metabolism and an up-regulation of hepatic inflammatory
pathways in females vs. males after VSG. While the males had a significant reduction in hepatic lipids after VSG, there
was no reduction in females. Ad lib-fed and fasting circulating triglycerides, and postprandial chylomicron production
were significantly lower in VSG relative to Sham animals of both sexes (p < 0.01). However, hepatic VLDL production,
highest in sham-operated females, was significantly reduced by VSG in females but not males.

Conclusions: Taken together, although both males and females lose weight and improve plasma lipids, there are
large-scale sex differences in hepatic gene expression and consequently hepatic lipid metabolism after VSG.
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Background
To date, bariatric surgical procedures are the most
successful method to treat obesity and resolve metabolic
comorbidities. Vertical sleeve gastrectomy (VSG) is a
particular type of bariatric surgery which removes about
80% of the stomach along the greater curvature and
involves no intestinal rearrangement. VSG is rapidly
expanding in utilization due to the fact that it is highly
efficacious at causing weight loss (60–65%) [1, 2] and
improving type 2 diabetes and hyperlipidemia [3].
The mechanism(s) that underlie the efficacy of bariatric

surgery are unknown but our contention is that there are
key molecular events triggered by surgery that have
lasting effects on metabolic homeostasis. Many groups,

including our own, are focused on utilizing rodent
models of bariatric surgery in order to identify these
molecular events [4–7]. However, despite the fact that
women represent approximately 80% of the bariatric
surgery patient population, the vast majority of the
preclinical work, has been in male rodents (see [8–10] as
exceptions). Overall, this distinction may not seem
important; surgery is highly efficacious regardless of sex.
However, biological sex has potent effects on lipid metab-
olism that extends beyond region-specific fat distribution.
For example, in response to metabolic stress, such as
weight loss or exercise, fat is mobilized more readily in
women [11–14]. This is also evident from an evolutionary
perspective where transcriptional profiling of hepatic
genes revealed that 70% of 1249 genes were upregulated
in females and many of those genes were related to lipid
metabolism [15]. Thus, if we are to understand the
molecular changes underlying the success of surgery, we
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cannot ignore the potential influence of sex on the af-
fected pathways.
Our previous data have demonstrated a reduction in

circulating [16] and hepatic [17] triglycerides in male
rats following VSG. In contrast, female rats that had
VSG prior to pregnancy but were sacrificed several
months after pregnancy and lactation, demonstrated
elevated hepatic triglycerides [8]. It remains unknown
whether this would also be seen in female rats that had
never been pregnant. Thus, the purpose of the present
study was to directly compare hepatic lipid metabolism
in virgin male and female rats after VSG.

Methods
Animals
All procedures for animal use were approved by the
University of Cincinnati Institutional Animal Care and
Use Committee and follow the guidelines outlined in the
National Institutes of Health guide for the care and use of
laboratory animals (NIH Publications No. 8023, revised
1978). Two cohorts of age-matched (8 weeks) Long Evans
rats (male body weight 225–250 g, female body weight
175–200 g) (Harlan Laboratories, Indianapolis, IN) were
individually housed and maintained on a 12/12-h light/
dark cycle at 25 °C and 50–60% humidity. We chose to
match the animals by age because of the complications in-
volved in matching by body mass requiring either that the
males be severely food restricted or the females much
older than the males. Further, complicating matching by
body mass, male and female rats have different weight
gain trajectories in response to high-fat diet.
Following acclimatization to the facilities, animals

were given ad libitum access to water and a custom-
made palatable high-fat diet (high-fat diet) that we have
used previously [18] (D12451, Research Diets, New
Brunswick, NJ, 4.73 kcal/g, 45% butter fat; 19g of butter
oil and 1 g of soybean oil to provide essential fatty acids)
for 3 weeks prior to surgery and maintained on the diet
until the studies were terminated. Animals were assigned
to receive either Sham or VSG surgery in a counterba-
lanced fashion by body weight. Cohort 1 (male, n = 6;
female, n = 6 rats) was studied for hepatic microarray
gene expression after surgery while cohort 2 (male, n = 20
and female, n = 20 rats) was studied for the phenotypic
response to surgery.

Surgical procedures
Four days prior to surgery, body composition was
assessed using an EchoMRI analyzer (Houston, TX).
Animals were fed Osmolite OneCal liquid diet but no
solid-food for 48-h prior to surgery. VSG was performed
as previously described [19]. Briefly, it consisted of a
midline abdominal laparotomy with exteriorization of
the stomach. The lateral 80% of the stomach was excised

using an ETS 35-mm staple gun (Ethicon Endo-Surgery,
Cincinnati, OH), leaving a tubular gastric remnant in
continuity with the esophagus. This gastric sleeve was
then reintegrated into the abdominal cavity and the
abdominal wall was closed in layers. For the sham
surgery, an abdominal laparotomy was performed, light
manual pressure was applied with to the exteriorized
stomach, and then the abdomen was closed in layers.
For 3 days following surgery, all rats received twice-daily

subcutaneous injections of 5 mL saline and 0.20 mL
Buprenex® (0.05mg/kg), and animals were maintained on
Osmolite liquid diet which was replaced with high fat diet
on day 4.

Microarray studies
During post-operative week 9, animals were fasted for
24 h and then received either 2 mL (males) or 1.3 mL
(females) of olive oil. Blood was taken again at 2-h post-
gavage and then animals were killed by an injection of
Fatal Plus (1 mg/g body weight) and tissues were
collected to determine the impact of sex and surgery on
liver triglycerides and hepatic gene expression. The time
point was chosen based on previously published work
that demonstrates it reflects the time point of the initial
rise in both plasma and hepatic uptake of olive oil [20].
Olive oil was used as this is the type of fat we used in
previous studies [16]. Liver tissue was collected freshly
frozen in methyl butane and then stored in −80 °C until
further processing. Hepatic RNA was extracted using a
QIAGEN miniprep RNA kit (QIAGEN, Inc, Valencia,
CA). The microarrays were performed by the CCHMC
Genomics Core. The quality of the total RNA was
checked by a 2100 Agilent Bioanalyzer using the RNA
6000 Nano Assay. The GeneChip 3’ IVT Express Kit
(Affymetrix) was used to make double-stranded cDNA
from 0.3 μg of total RNA. An in vitro transcription reac-
tion creates biotin-labeled cRNA target. The cRNA
target is chemically fragmented and then hybridized to
an Affymetrix Genechip Array. Then, 15 μg of fragmented
cRNA was then hybridized to a Rat Genome 230 2.0 Array
(Affymetrix). Probe arrays were incubated at 45 °C for 16
h in the hybridization oven 640 (Affymetrix) rotating at 60
rpm. Probe arrays were washed and stained using the
Fluidics Station 450 (Affymetrix) utilizing the fluidics
protocol FS450-0001. The stain and Antibody solutions
are produced by Affymetrix and contained in the
Genechip Hybridization Wash and Stain Kit. GeneChips
were scanned using the Affymetrix GeneChip Scanner
3000 7G. The .cel and .chp files for the samples were cre-
ated using the Expression Console software (Affymetrix).
Relative hepatic gene expression from male and female

(Sham and VSG treatments) rats was obtained using the
Affymetrix Gene Chip Rat 230 2.0. Data was normalized
using the RMA algorithm to the median of the control

Grayson et al. Biology of Sex Differences  (2017) 8:4 Page 2 of 12



samples (sex-specific Sham). We further filtered the
data, requiring a signal intensity of 75 in at least one of
the four experimental conditions. In order to generate
gene-sets of differentially regulated significant and rele-
vant genes, we formed pairwise comparisons between
select conditions with a fold-change cut-off of 1.5 and
accepted significance at p < 0.05. Additionally, we per-
formed a ranking procedure to select the 500 top- and
bottom-expressed genes for each condition. All expres-
sion analysis was performed in GeneSpring 12.5. Gene
sets were submitted to ToppGene for ontological ana-
lysis, which uses unbiased methods to determine gene
set enrichment for pathways, biological processes, and
molecular functions.

Body weight, composition, and food intake
In a second cohort of VSG and sham animals, food
intake and body weights were measured daily for the
first week following surgery. Body composition (fat and
lean mass) was determined as described above before
high fat diet (3 weeks prior to surgery), 4 d prior to
surgery, and then 4 and 16 weeks following surgery. Dur-
ing the postoperative period, several physiological studies
were performed to determine the impact of biological sex
on physiological responses to bariatric surgery, in particu-
lar, aspects of lipid metabolism were evaluated.

Glucose tolerance and baseline measurements
During postoperative week 5, animals were fasted for ~6
h following the onset of the light. Baseline blood glucose
was measured using an AccuChek glucometer. Rats were
administered 50% dextrose by oral gavage at a flat dose
equivalent to 1.5 g of glucose per the average body mass
of the respective sex. Thus, all males received 1.5mL and
all females received 0.9mL of 50% dextrose. Blood glu-
cose was then measured at 15, 30, 45, 60, and 120 min
following dextrose administration. In addition, plasma
from the 0 time point was also used to determine fasting
levels of circulating triglyceride and cholesterol.

Lipid homeostasis
Physiologic disappearance of triglycerides
During post-operative week 6, animals were allowed ad
libitum access to high fat diet for 24 h prior the experi-
ment. Hoppers were then removed at lights on and tail
vein blood sample taken at time 0, 4, 8, and 24 h follow-
ing hopper removal to assess plasma triglycerides.

Lipid absorption through fecal analysis
During post-operative week 8, 24 h fasted rats received a
gavage of a lipid emulsion containing 20% soybean oil,
1.2% egg phospholipid, 2.5% glycerin, 2.5% sucrose
polybehenate at a volume of 5 mL/kg. Fecal samples
were collected 24 and 48 h later. Fecal lipid content was

assayed by gas chromatography of fatty acid methyl es-
ters by the UC Mouse Metabolic Phenotyping Core
(MMPC). Dietary lipid absorption was estimated using a
ratio of total fecal fatty acids to sucrose polybehenate.

Post-prandial lipid distribution
During post-operative week 23, animals were fasted
for 24h, baseline blood was sampled for subsequent
analysis of plasma triglyceride, and then the animals
each received a gavage of radioloabeled [9, 10(N)-3H]
glycerol trioleate (100 μCi; #NET431L005MC, Perkin
Elmer) mixed with 5.0 mL/kg of olive oil. Blood was
taken again 2h after the gavage and then animals
were sacrificed in a counter-balanced fashion (by sex)
by an injection of Fatal Plus (1 mg/g body weight).
Tissues were collected to determine the impact of sex
and surgery on postprandial lipid distribution, liver
triglycerides, and gene expression.

Postprandial chylomicron production
During post-operative week 7, animals were fasted for
24 h and then within 1 h of lights received an intraperi-
toneal injection of 1 g/kg poloxamer 407 (P-407; Sigma-
Aldrich, St Louis, MO), a lipoprotein lipase inhibitor.
Then 15 min later, a baseline blood sample from the tail
vein was collected (t = 0) and an intragastric gavage of
0.5 mL/kg olive oil was delivered (average dose: males
240μl and females 130μl olive oil). Tail vein blood was
then collected at 2 and 6 h following gavage.

Hepatic VLDL production
During the 18th postoperative week, rats were fasted for
24 h, baseline blood samples were collected, and then
rats received an intraperitoneal injection of 1 g/kg
poloxamer 407 (P-407; Sigma-Aldrich, St Louis, MO).
Blood was sampled again at 2, 4, and 6 h after injection.

Analyses
RNA processing and real-time PCR
In order to confirm the findings of the array data per-
formed in cohort 1, liver tissue from the second cohort
of animals was collected and hepatic RNA was extracted
as described above. cDNA was transcribed using an
iScript kit (Bio-Rad Laboratories, Hercules, CA). QPCR
was performed using a TaqMan 7900 Sequence Detec-
tion System with TaqMan Universal PCR Master Mix
and TaqMan Gene Expression Assays (all from Applied
Biosystems, Foster City, CA; Primers listed in Table 1).

Tissue and Plasma Analytes
Liver triglycerides were measured using an enzymatic
assay (#T7532-120, Pointe Scientific, Canton MI).
Plasma was stored at -80 °C until further processing.
Plasma was diluted 1:20 in saline in order to measure
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triglycerides (#TR22421, Infinity Triglyceride Reagent,
Thermo Scientific, Waltham, MA). Cholesterol (Infinity
Cholesterol, #TR13421, Thermo Scientific, Waltham, MS),
total bile acids (#BQ 092A-EALD, BQkits Diagnostics,
San Diego, CA), β-hydroxybutyrate (#SBHR-100, Fisher
Scientific, Waltham, MA), and non-esterified fatty acids
(Wako Diagnostics, Richmond, VA) were measured using
enzymatic assays. TGFβ measurements were made using a
standard ELISA (#MB100B, R&D Systems, Minneapolis,
MN). Estradiol and progesterone assays were performed
by the Vanderbilt Hormone Assay and Analytical Services
Core (Vanderbilt University, Nashville, TN).

Statistical analyses
Except for the microarray data which was analyzed as
described above, all statistical analyses were performed
using GraphPad Prism version 4.0 (GraphPad Software,
San Diego, California, USA). To observe time-wise
differences, two-way ANOVA (variables: surgery/sex and

time) with a Bonferroni post hoc test was used. When
time was not a variable, a two-way ANOVA for sex and
surgery with a Bonferroni post hoc test was used. All
results are given as means ± SEM. Results were consid-
ered statistically significant when p < 0.05.

Results
Previous literature suggests that VSG reduces hepatic
triglycerides in male mice [17, 21] but not in previously
pregnant female rats [8]. Thus, we generated a small
cohort of virgin male and female rats in order to do a
side by side comparison of the hepatic lipid response to
Sham vs. VSG surgery. We found that Sham males had
greater hepatic triglycerides than Sham females (Fig. 1a)
and after VSG, males had a significant reduction in hep-
atic triglycerides (student’s t test, p < 0.001). Conversely,
females had no surgery-induced improvements in
hepatic triglycerides (Fig. 1a). This phenomenon was
recapitulated in a second cohort of animals (Fig. 1a).

Table 1 Real-time QPCR validation of genes using hepatic samples in cohort 1

Gene Name Catalog # Female Male Statistics (two-way
ANOVA)Sham VSG Sham VSG

Lipid metabolism

ACOX1 Rn01460628_m1 100 ± 7a 75 ± 5b 91 ± 3 94 ± 7 p (surgery × sex) < 0.05

CD36 Rn01442639_m1 100 ± 10a 49 ± 6b 2 ± 1c 4 ± 1c p (surgery × sex) < 0.001

CPT1A Rn00580702_m1 100 ± 9 72 ± 11 90 ± 6 79 ± 12 NS

DGAT2 Rn00584870_m1 100 ± 6a 73 ± 6b 54 ± 4b 53.1 ± 4b p (surgery × sex) < 0.05

FASN Rn00569117_m1 100 ± 12 70 ± 11 17 ± 5 14 ± 2 p (sex) < 0.001

LDLR Rn00598442_m1 100 ± 8a 64 ± 5c 29 ± 3b 31 ± 3b p (surgery × sex) < 0.01;

MGAT Rn00585985_s1 100 ± 4 82 ± 6 68 ± 5 67 ± 6 p (sex) < 0.001

PGC1 Rn00590984_m1 100 ± 12 104 ± 12 35 ± 3 68 ± 7 p (sex) < 0.001

PPARα Rn00566193_m1 100 ± 9 59 ± 8 106 ± 10 102 ± 11 p (sex) < 0.05, p (surgery)
< 0.05,

PPARγ Rn00440945_m1 100 ± 13 67 ± 10 85 ± 13 75 ± 11 p(surgery) < 0.05

SREBP Rn01495769_m1 100 ± 6 68 ± 7 70 ± 10 58 ± 5 p (surgery) < 0.05, p (sex)
< 0.01

Cholesterol Metabolism

ACAT2 Rn01759928_g1 100 ± 11a 66 ± 7b 20 ± 1c 21 ± 3c p (surgery × sex) < 0.05;

CYP7a1 Rn00564065_m1 100 ± 24 85 ± 11 40 ± 7 44 ± 15 p (sex) < 0.001

MTTP Rn01522970_m1 100 ± 7a 64 ± 5b 35 ± 2c 37 ± 3c p (surgery × sex) < 0.001

LRH1 Rn00572649_m1 100 ± 15a 57 ± 5b 91 ± 7a 92 ± 6a p (surgery × sex) < 0.001

Receptors

Erα Rn00433142_m1 100 ± 6a 75 ± 5b 81 ± 4b 76 ± 5b p (surgery × sex) < 0.05

FGFR1 Rn00577234_m1 100 ± 10 106 ± 6 88 ± 5 116 ± 8 p (surgery) < 0.05

FXR Rn00572658_m1 100 ± 7a 59 ± 8b 74 ± 6b 64 ± 5b p (surgery × sex) < 0.05

Gluconeogenesis

G6PC Rn01529640_g1 100 ± 4 80 ± 4 106 ± 6 93 ± 7 P(surgery) < 0.01

PCK1 Rn01529009_g1 100 ± 8 92 ± 12 158 ± 13 185 ± 16 P(sex) < 0.001

Data are presented as mean ± SEM. Groups with different superscript letters are significantly different via Tukey post hoc analysis
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We also utilized a gene array analysis to determine if
patterns of hepatic gene expression changes after VSG
would explain this sex difference. Previous work using
mRNA-seq analysis of male livers after VSG has found
increased expression of genes related to bile acid
metabolism, and fatty acid oxidation, and decreased
expression of genes related to lipogenic pathways
[17]. However, in our females we found that VSG
downregulated lipid, glucose, and bile acid metabolic
pathway genes (Additional file 1: Figure S1). While Fig. 1b
shows many similarities in gene expression between obese
Sham males and females, in response to VSG, males and
females demonstrated directly opposing gene-related
changes as clearly visualized in the heat map (Fig. 1b).
Specifically, genes that regulated lipid metabolism (choles-
terol biosynthesis, lipid metabolism, the hepatic biliary
system, nuclear receptors in lipid metabolism) were all
down-regulated by VSG in females (Fig. 2a, b). Other
VSG-induced gene changes in females were increases in
genes related to immune activation (i.e., leukocyte activa-
tion, lymphocyte activation, hematopoietic number, T cell
proliferation, innate immune response, adaptive immune
response, regulation of inflammatory response) (Fig. 2a, b).
These latter findings will be probed in future studies.
We then performed qPCR on liver tissue in order to

validate the striking microarray findings. Similar to the
array and consistent with our in vivo findings, genes that
regulate or are involved in cholesterol synthesis and
VLDL production (MTTP, DGAT2, ACAT2, CD36,

LDLR, LRH1) and lipid metabolism (ACOX1, SREBP,
ERα) were down-regulated by VSG in females (Table 1).
Because of the clear differences in both hepatic triglyc-

erides and gene expression, we generated a second
cohort of animals in order determine differences in the
physiological regulation of lipid metabolism. We found
that both male and female rats lost a significant amount
of body weight in the first 31 days after VSG and
remained at a reduced body weight until they were ter-
minated at the end of the study (main effect of surgery,
p < 0.001 and time p < 0.001) (Fig. 3a, b). Following VSG,
males exhibited a transient reduction in lean body mass
at 4 weeks postoperatively (student’s t test, p < 0.01)
(Fig. 3c) that was no longer significant at week 16. For
females, there was no significant difference in lean body
mass at any time point between surgical groups (Fig. 3d).
Both males and females had a significantly lower body
fat mass at 4 and 16 weeks after VSG vs. sham surgeries
(p < 0.001) (Fig. 3e, f ). The absolute change in body fat
mass was less in females as compared to males likely
due to the comparatively smaller pre-surgical fat mass.
During postoperative week 5, both male and female VSG
animals had significantly reduced fasting blood glucose
(main effect of surgery, p < 0.01) (Fig. 3g) and females
overall had reduced glucose levels in comparison to
males (main effect of sex, p < 0.001) (Fig. 3g). After VSG,
males had significantly reduced glucose levels 45 and 60
min after glucose gavage compared to Sham animals (sur-
gery × time, p < 0.001) (Fig. 3h). Glucose response to the
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oral glucose gavage was not significantly different between
sham and VSG surgeries at any time point in the females.
We measured baseline characteristics of several

plasma metabolites and hormones and these reflected

the expected sex and surgery-induced differences
(Table 2). Specifically, males had significantly greater
non-esterified fatty acids (NEFA; p < 0.001) but lower
cholesterol (p < 0.001), bile acids, and estradiol levels

Fig. 2 a Hepatic gene changes in males vs. females following VSG. Gray bars designate categories that were down-regulated in VSG females vs.
VSG males. Black bars designate genes that were up-regulated in VSG females vs. VSG males. b Gene lists for categories of gene changes exhibited in
panel a (n = 3/group)
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compared to females (p < 0.001). In both sexes, surgery
reduced plasma triglycerides (p < 0.05), plasma NEFA
(p < 0.01), fat absorption (p < 0.01), plasma estradiol levels
(p < 0.01), and significantly increased total plasma bile acid
levels (p < 0.05).
We next performed a series of studies to examine if

organ-specific lipid handling was differentiated by bio-
logical sex and could explain the lack of reduction in
hepatic triglycerides. We found that both male and
female VSG animals had significantly reduced plasma
triglycerides in an ad lib fed state and at 4, and 8 h of
fasting, compared to the Sham animals (surgery × time
interaction, p < 0.0001) (Fig. 4a, b). By 24-h of fasting, all
groups had similar levels of triglycerides.

We then examined whether postprandial lipids were
preferentially trafficked to the liver in VSG females com-
pared to males. Basal levels of plasma triglycerides were
greatest in sham surgery males compared to all other
groups (Fig. 4c; p < 0.01) and following the gavage of a
radiolabeled lipid emulsion lead to there were similar
increases in plasma triglycerides (Fig. 4c) in the in males
and females regardless of surgery. In the liver, and inde-
pendent of surgery, females had significantly greater 3H
uptake than males (main effect of sex, p < 0.001; Fig. 4e).
However, surgery did not alter the amount of 3H-gly-
cerol trioleate uptake into the liver, gastrocnemius, or
gonadal fat (epididymal for male and peri-ovarian for
females) tissues but did cause a significant increase of
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3H-glycerol trioleate in subcutaneous fat of VSG com-
pared to Sham males (p < 0.05) (Fig. 4e).
To determine if surgery impacted intestinal chylo-

micron production in a sex-dependent manner, we
administered poloxamer 407, a drug that prevents
plasma triglyceride hydrolysis, to fed animals. Under
these conditions, the increase in plasma triglycerides is a
surrogate measure for chylomicron production. We no
impact of sex, per se, but found that male and female
VSG animals had similarly increased triglyceride levels
and thus reduced rates of triglyceride appearance

compared to sham surgery animals (main effect of
surgery; Fig. 5a, b). Thus, postprandial chylomicron pro-
duction was reduced after VSG in both males and females.
We next determined whether hepatic VLDL produc-

tion, which is the predominant source of triglycerides
under fasting conditions, was altered by biological sex.
To do this, we administered poloxamer 407 to 16h
fasted animals. Sham females had significantly greater
VLDL production compared to all other groups and im-
portantly, VSG lowered this to the level of males at 4
and 6 h (Fig. 5c). Likewise, the rate of triglyceride
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Fig. 4 Postprandial lipid uptake. Plasma triglyceride levels in ad libitum fed rats (t = 0) and following 4, 8, and 24 h of fasting in a males and b females.
c Plasma triglycerides in males and females following the 3H glycerol trioleate + olive oil gavage. d Plasma 3H in male rats following a 100μCi + 5ml/kg
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Table 2 Plasma metabolite measurements *p < 0.05, **p < 0.01, ***p < 0.001. Data are presented as mean ± SEM

Metabolite Female Male 2-Way ANOVA Statistics

Sham VSG Sham VSG

Triglycerides (mg/dl) 339 ± 44 107 ± 21 439 ± 55 153 ± 27 p (surgery) < 0.05

Cholesterol (mg/dl) 91 ± 4 87 ± 3 71 ± 4 62 ± 5 p (sex) < 0.001

β-Hydroxybutyrate (ng/ml) 1.5 ± 0.1 1.5 ± 0.1 1.9 ± 0.1 1.7 ± 0.2 NS

NEFA (mEq/L) 1.8 ± 0.1 1.6 ± 0.1 2.3 ± 0.1 1.9 ± 0.1 p (sex) < 0.001; p (surgery) < 0.01

Total bile acids (μM/L) 23 ± 3 93 ± 19 13 ± 5 45 ± 9 p (sex) < 0.001; p (surgery) < 0.05

Fat absorption (%) 93 ± 2 82 ± 5 90 ± 4 82 ± 3 p (surgery) < 0.01

Estradiol (pg/ml) 70 ± 11 39 ± 4 28 ± 2 20 ± 3 p (sex) < 0.001; p (surgery) < 0.01

Progesterone (ng/ml) 6.4 ± 1.5 4.9 ± 0.6 ND ND NS
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appearance over time (slope of the data in Fig. 5d) was
significantly reduced by VSG in females but not males
(sex × surgery interaction, p < 0.001). These data sug-
gest that hepatic triglyceride export is slowed by VSG
in females.

Discussion
Men and women have distinct regulation of lipid me-
tabolism. These differences go beyond region-specific
fat distribution. For example, at the same level of
obesity, women have a lower risk for type 2 diabetes
mellitus (T2DM) and cardiovascular disease [22], in
response to metabolic stress, such as weight loss or
exercise, fat is mobilized more readily in women [11–14],
and lastly genome-wide association studies have iden-
tified multiple sex-dependent loci in medically-
relevant traits [23]. Here, we find that bariatric
surgery emphasizes sex differences specifically in hep-
atic lipid handling such that genes that regulate lipid
metabolism are down-regulated by VSG resulting in
lower VLDL export and maintenance of sham-level
hepatic triglycerides. This is in contrast to the
surgery-induced reduction in hepatic triglycerides by
VSG in males which is not explained by changes in

lipid uptake or export and likely is reflected by intra-
hepatic changes in metabolism [21].
Similar to clinical reports, VSG was a successful strat-

egy in causing weight loss and improving plasma glucose
and lipid levels in both male and female rats [24–26]. It
is only to this extent of physiology that most clinical
studies have probed and they report similar responses to
surgery between men and women. While some studies
have observed similar clinical responses to bariatric
surgery between men and women [27], exploration of
the bariatric outcomes longitudinal database (BOLD) did
find that sex contributed to the variability of surgical
outcome [28]. However, a true physiological comparison
of the responses to surgery in men vs. women is limited
by the small number of male patients in addition to the
need for the appropriate resources for these studies. For
example, hormone status likely influences the surgical
outcome; however, the large- and even small-scale
studies that included sex as a variable in models to
evaluate surgical success were unable to actually
measure hormone status [9, 28].
Both clinical and preclinical data clearly reflect sexual

dimorphisms in lipoprotein profiles and indicate that
females rely more on lipid flux during times of metabolic
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stress [13, 14, 29]. Importantly, our rodent model
results present here also have parallels to clinical
work. As we observed with our rats, women have
greater VLDL production than men [30] and this has
been found to be due specifically to greater levels of
estradiol in women [31]. Lastly, in a group of eight
women and one man, VLDL production was found to
be reduced by RYGB [31]. Whether this would influ-
ence hepatic triglyceride stores in patients remains to
be determined. Retrospective studies suggest an im-
provement in hepatic lipids after RYGB [31–34].
However, a few studies report either a lack of im-
provement or even increased steatosis after RYGB
[35, 36]. The bottom line is that even though there is
an average improvement of liver fat, this does not
happen in all of patients after RYGB suggesting that
there is individual variation in response to the
surgery. In addition, postoperative timing of hepatic
lipid measures [37], type of surgery [34] and tech-
nique used to assess hepatic lipids could all influ-
ence conclusions about the impact of surgery on
hepatic lipids.
The present data support previous findings that

hepatic lipid flux is quite different in males and females;
differences which typically protect the female from
hepatic lipid accumulation. However, VSG changes this
metabolic profile preventing further reductions in
hepatic triglycerides in female rodents. It is possible that
the lack of an effect of VSG on hepatic triglycerides in
females is due to a floor effect; i.e., the Sham-operated
females already had lower hepatic triglyceride levels
compared to males. Our previous research demonstrated
that high fat vs. chow-fed female rats have increased
hepatic triglycerides [8]. Thus, in our current study we
should have enough of an experimental signal to detect
a surgery-induced reduction in hepatic triglycerides if
one existed. It is important to note that this level of hep-
atic triglycerides is still lower than Sham males, and ex-
plains why glucose tolerance was lower in Sham and
VSG females vs. Sham males. Interestingly, our previous
research has shown that VSG prior to pregnancy leads
to a long-term increase in hepatic triglycerides but these
animals maintained a surgery-induced improvement in
glucose tolerance [8]. Women, and female zucker
diabetic fatty rats, ob/ob and db/db mice all display pro-
tection from diabetes or hyperglycemia, respectively
compared to men/males [22, 38–41]. While we
hypothesize that VSG is yet another model whereby
females are able to protect hepatic glucose metabolism
in the face of higher liver triglycerides, we also admit
that the short length of time on HFD, as well as the fact
that the animals are maintained on HFD post-opera-
tively, may limit the translation of this work to
humans with longer-standing obesity and post-

operative changes in feeding behavior that are meta-
bolically favorable.
An interaction between reproductive hormones and

surgery likely drives changes in lipid metabolism in
females. Estradiol has been demonstrated to be a pri-
mary mechanism driving sex differences in lipid metab-
olism [13, 42]. In an elegant series of studies, Zhu et al.
[42] found that hepatic estrogen receptor alpha (ER α)
signaling plays a crucial role in regulating lipid flux
across the liver. Namely, hepatic ER α signaling limited
liver fat synthesis but maintained triglyceride export in
the setting of hyperinsulinemia with the net result of
reduced hepatic triglycerides. Thus, our finding that
hepatic triglycerides failed to reduce after VSG may be
explained by the reduced hepatic ERα expression
(Table 1) also observed in the females after VSG. Inter-
estingly, reduced hepatic ER α has been found in
patients with non-alcoholic steatohepatitis [43] demon-
strating clinical relevance of hepatic estrogen signaling.

Conclusions
In conclusion, our results indicate that male and female
rodents have similar qualitative responses to VSG. How-
ever, there are large-scale changes in the genes regulat-
ing lipid metabolism in female but not male rodents in
response to VSG. In addition, VSG causes less export of
triglycerides in a fasting state in females while lipid
uptake and export are not changed by VSG in males. As
a result, while males have a significant reduction females
retain high-fat levels hepatic triglycerides. In our efforts
to understand the molecular underpinnings of bariatric
surgery, research has mostly neglected the contribution
of sex to outcomes. The current results demonstrate that
studying female rodents is necessary to advance our
understanding of the molecular mechanisms of bariatric
surgery for the greater than 80% of bariatric surgery
patients that are female.

Additional file

Additional file 1: Figure S1. Hepatic gene changes in females
following VSG and sham surgeries. Gray bars designate categories that
were down-regulated in VSG. Black bars designate genes that were
up-regulated in VSG. B. Gene lists for categories of gene changes
exhibited in panel A (n = 3/group). (PDF 112 kb)
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