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Abstract

Sexually dimorphic traits arise through the combined effects of sex hormones and sex chromosomes on sex-biased
gene expression, and experimental mouse models have been instrumental in determining their relative contribution
in modulating sex differences. A role for the Y chromosome (ChrY) in mediating sex differences outside of
development and reproduction has historically been overlooked due to its unusual genetic composition and
the predominant testes-specific expression of ChrY-encoded genes. However, ample evidence now exists
supporting ChrY as a mediator of other physiological traits in males, and genetic variation in ChrY has been
linked to several diseases, including heart disease, cancer, and autoimmune diseases in experimental animal
models, as well as humans. The genetic and molecular mechanisms by which ChrY modulates phenotypic
variation in males remain unknown but may be a function of copy number variation between homologous
X-Y multicopy genes driving differential gene expression. Here, we review the literature identifying an association
between ChrY polymorphism and phenotypic variation and present the current evidence depicting the mammalian
ChrY as a member of the regulatory genome in males and as a factor influencing paternal parent-of-origin effects

in female offspring.
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Introduction

Like autosomal chromosomes (Chrs), the sex chromo-
somes (ChrX; ChrY) are thought to have once been identi-
cal pairs that were free to recombine and exchange
genetic material. Over the course of evolution, ChrY be-
came unique from all other Chrs with the acquisition of a
dominant sex-determining gene and subsequent chromo-
somal inversions that restricted recombination with its
homologous ChrX, that led to its degradation [1,2]. The
relatively few protein-coding genes on ChrY are predom-
inantly male-specific genes acquired through transposition
and translocation from other Chrs [3,4]. The remainder of
ChrY is largely ampliconic containing protein-coding and
non-protein-coding sequences. These features of ChrY
have led to the consensus that it is primarily composed of
“junk” DNA whose contribution to phenotypic differences
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among the sexes is limited to sexual development and
spermatogenesis. Indeed, ChrY is not essential to life, and
large deletions in the long arm of the murine ChrY have
no overt phenotypic effects except on spermatogenesis
and sex ratio distortion [5-7]. Nonetheless, a rapidly grow-
ing body of research has identified an association between
the mammalian ChrY and biological functions not directly
related to male reproduction.

Animal models have been useful for investigating the
effects of sex Chrs on complex traits. Two of the most
referenced models in this review are ChrY consomic
mice and the “four core genotypes” (FCG) mouse model,
both of which have been recently reviewed in detail [8].
ChrY consomic strains provide insight into the effects of
natural genetic variation in ChrY on male phenotypes.
They are generated by intercrossing a male mouse with
a given ChrY to a female mouse with the desired genetic
background, such as C57BL/6 ] (B6). After a series of
backcrosses of 10 generations or more to B6 females,
the autosomes, ChrX, the peudoautosomal regions of
ChrX and ChrY, and the mitochondrial genome of the
strain donating ChrY are replaced with the B6 genome.
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Therefore, the genetic variation among ChrY consomic
strains derives from the non-recombining region of
ChrY called the nonpseudoautosomal or male-specific
region of ChrY (MSY) [9].

The MSY is composed of a long arm and a short
arm. The long arm of the MSY is comprised of an
ampliconic sequence repeating about 200 times that
contains genes critical for spermatogenesis, which
are amplified to varying degrees among different
Mus species [10,11]. The short arm encodes 12 fam-
ilies of protein-coding genes [10], including the
testes-determining gene Sry (sex-determining gene of
ChrY). The existence of functionally significant Sry
polymorphisms is well documented in studies using
B6-ChrY consomic strains, where Sry alleles give rise
to varying degrees of sex-reversal, ranging from nor-
mal testis development to permanent sex-reversal
[12-17]. Therefore, Sry polymorphisms could lead to
differences in neonatal and/or adult testosterone
levels among B6-ChrY consomic strains. Studying
multiple B6-ChrY consomic strains for concordance
between the strain distribution patterns of Sry poly-
morphisms with the phenotype of interest can shed
light on whether hormones may be influencing the
trait.

The FCG mouse model was designed to investigate
the contribution of sex Chrs (XX vs. XY) or gonadal type
(ovaries vs. testes) on disease. It has been useful in un-
coupling sex hormone effects from sex Chr effects. This
mouse model was made possible due to two genetic mu-
tations. First, a genetic mutation in the retrovirally in-
fected EK.CCE embryonic stem cell line (from 129/SvEv
mice) [18,19] deleted the region containing the testes-
determining gene Sry on ChrY, resulting in the develop-
ment of XY female mice [20]. Second, transgenic mice
were constructed with autosomal expression of Sry,
which complements the Sry deletion transmitted by fe-
male founder mice derived from the ESC line [21]. In
the FCG model, when XX and XY mice with the same
gonadal type differ in phenotype, the difference is attrib-
uted to sex Chr complement (the number of ChrX or
the presence of ChrY).

In this review, we discuss the growing body of research
exploring the ability of the mammalian ChrY to regulate
physiology and disease in males. We focus on those
areas of biology with which ChrY is not historically asso-
ciated and refer the reader to an informative review [22],
together with the more recent references in [23] for
ChrY’s role in male reproduction and spermatogenesis,
or brain and behavior phenotypes [24,25]. Finally, we
highlight current evidence for the evolutionary conserva-
tion of ChrY as a member of the regulatory genome in
males due to its ability to modulate genome-wide gene
expression.
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Growth and metabolism

Pre-gonadal sexual dimorphisms provide evidence for
phenotypic differences being driven by sex Chrs inde-
pendently of the actions of sex hormones. In mammals,
differences in developmental rate precede the produc-
tion of gonadal hormones, with XY individuals showing
increased growth compared to XX individuals [26]. For
example, an increase in cell number among XY preim-
plantation embryos [27] is due to ChrY [28]. Further-
more, XY fetuses are larger because they are more
developmentally advanced than XX fetuses in the same
litter, and the contribution of ChrY to this difference
varies with the strain origin of ChrY [29]. Genetic differ-
ences in ChrY also regulate cardiomyocyte size and car-
diac mass [30]. In reciprocal ChrY consomic strains
between B6 and A/] mice, B6-ChrY*” and A/J-ChrY®®
mice have smaller and larger cardiomyocyte sizes than
wild-type B6 and A/J mice, respectively [30]. The reduc-
tion in cardiomyocyte size is due to the absence of the
hypertrophic effects of post-pubertal testosterone on
these cells and is a direct consequence of ChrY-encoded
polymorphisms [31].

Adult body weight may also be under the control of
ChrY. Using of a panel of 17 ChrY consomic mouse
strains on the DH/Sgn background, a continuous distri-
bution in body weight in adult mice was identified [32].
The effect of ChrY from KK/Ta on body weight was in-
dependent of the autosomal and ChrX genetic back-
ground, thus supporting the interpretation that ChrY
contains genes that control body size in mice [32]. In
the FCG model on the MF1 genetic background, it was
observed that the presence of two sex Chrs, either XX
or XY, increases body weight and adiposity compared to
mice with only one ChrX (X0 mice) [33]. The similarity
between mice with either XX or XY suggests that both
sex Chrs possess genetic elements that influence metabol-
ism independently of gonadal hormones and that these ef-
fects may arise from the presence of the XY paralogs [33].

In humans, ChrY-mediated differences in growth are
observed as adult height differences between the sexes.
This ChrY effect was first observed in cases in which ab-
normal stature was the result of XX or XY gonadal dys-
genesis, in which people have gonadal steroid deficiency
irrespective of sex Chr complement. Therefore, similar
to the FCG mouse model, phenotypic differences be-
tween XY and XX individuals with gonadal dysgenesis
can be directly linked to differences in sex Chrs, rather
than gonadal sex hormones [34]. The mean adult height
of people with XY is significantly higher than in people
with XX gonadal dysgenesis, leading to the conclusion
that ChrY itself has genetic elements that promote
growth independently of gonadal sex steroids [35]. Fur-
thermore, data suggest that the 0.5- to 2-cm difference
in height reported between pre-pubescent boys and girls
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[36] may be driven by ChrY, thus contributing early to
the large difference in height manifested after the pro-
duction of sex hormones in adulthood [37].

Cardiovascular diseases

A male-biased sexual dimorphism exists in the incidence
and prevalence of many cardiovascular diseases [38].
Blood pressure is a risk factor associated with cardiovas-
cular disease, and rodent models of hypertension have
identified ChrY as a contributor to hypertension in
males. A rat model was used to investigate the genetic
mechanism driving spontaneous hypertension in SHR
(S) rats compared to the normotensive Wistar-Kyoto
(W) rat [39]. Male offspring from the W x S cross have
higher blood pressure than males from the S x W cross,
with no effect on females in either cross. Blood pressure
in offspring of reciprocal F, intercrosses was consistent
with the presence of a locus on ChrY, suggesting that
hypertension is mediated by ChrY. In an experimental
mouse model of hypertension using FCG mice, gonad-
intact XY males exhibit increased blood pressure com-
pared to XX females. In contrast, gonadectomized
(GDX) XX mice had greater mean arterial pressure com-
pared to GDX XY mice, regardless of gonadal sex [40].
This raises the possibility that the contribution of hor-
mones and sex Chrs to hypertension are in opposition
to each other, generating effects that reduce the overall
sex differences driven by one or the other.

Genetic variation in the human ChrY contributes sig-
nificantly to the quantitative variation of male diastolic
blood pressure in the overall population [41]. Polish and
Scottish men inheriting a ChrY with one (HindIII") of
two biallelic markers had a significantly higher systolic
and diastolic pressure [42], but this association is not
consistent across human studies. Research on cardiovas-
cular risk factors, including blood pressure, cholesterol
levels, and body mass index, among Polish and Japanese
men failed to identify a significant ChrY association
[43,44]. The inconsistency between ChrY haplotype and
hypertension in men led to a study examining the effects
of ChrY on blood pressure in pre-pubertal boys [45].
They observed that blood pressure was higher in HindIII
~ boys in the period before, and after, pubertal growth.
These boys were also younger at the onset of peak
height growth, suggesting that genetic variation in ChrY
may influence blood pressure and height in a sex
hormone-independent fashion.

Coronary artery disease is a male-biased cardiovascular
disease that is strongly associated with genetic variation
in ChrY. A study on a cohort of British men identified a
50% higher risk of coronary artery disease in men inher-
iting ChrY haplogroup I compared to other ChrY hap-
logroups [46]. This association was independent of any
traditional cardiovascular risk factors, including blood
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pressure, lipids, glucose, body mass index, C-reactive
protein, creatinine, and insulin resistance [46,47]. The
characterization of the macrophage transcriptome be-
tween haplogroup I vs. other ChrY haplogroups identified
differential expression in genes related to inflammation
and immunity [46]. Furthermore, macrophages from hap-
logroup I showed downregulation in the expression of the
ChrY genes UTY and PRKY [47], suggesting that the
ChrY-mediated influence on coronary artery disease may
be linked to differential expression of ChrY genes on the
immune system.

Immune system, infectious diseases, and autoimmunity
Sex-specific differences exist in many aspects of immune
system physiology and contribute to the pathogenic dif-
ferences in autoimmune and infectious disease observed
between males and females [48]. The female immune re-
sponse against many infectious pathogens tends to be
more robust, leading to a better prognosis in disease
outcome. However, the evolutionary advantage of this
heightened female immune response also contributes to
their higher risk of developing autoimmune disease.
While these sex differences in immunity are predomin-
antly linked to the differential effects of sex hormones
on immune cells, ChrY can also influence the immune
response and susceptibility to disease [46,49-53].
Mutations in the murine ChrY are also associated with
deficiencies in B cell, NK cell, and iNKT cell develop-
ment, suggesting a role for ChrY in the proper develop-
ment of the immune system. B and NK cell deficiencies
and Peyer’s patch defects were observed among a novel
immunodeficient mouse strain arising from a spontan-
eous ChrY mutation on the C57BL/6 N background. B
and NK cell populations gradually diminished from
3 weeks of age in male mice and were completely absent
by 10 weeks of age [54]. An analysis of ChrY revealed
that it was one third shorter than expected, and exome
sequencing did not identify any additional mutations.
Thus, these findings were associated with a ChrY long
arm deletion, which adds to the accumulating evidence
(discussed later in the review) for gene regulatory roles
by genetic information on the long arm of mouse ChrY.
Male, but not female, mice genetically deficient for
IEN-afR1 lack Voal4 +iNKT cells, yet conventional T
and NK cells remained unaffected [55]. This deficiency
is linked to ChrY and is independent of IFN-af3. Female
bone marrow was capable of reconstituting all lympho-
cyte compartments and, in the context of lymphopenia-
induced proliferation, female IFNapR1™~~ thymocytes,
including Val4 +iNKT cells, survived and proliferated
in both male and female hosts. These findings demon-
strate that sex hormones do not cause the loss of iINKT
cells in male mice and that the iNKT defect is cell au-
tonomous and driven by ChrY [55]. Furthermore, iNKT
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cell number among a panel of B6-ChrY consomic strains
shows a continuous distribution in the percentage of
basal iNKT cells among male mice, suggesting that nat-
ural genetic variation in ChrY influences the develop-
ment of these cells [52]. However, the ChrY from
IFNaBR1™~ male mice, which was transmitted by male
founder mice derived from 129/SvEv embryonic stem
cells, is unique, as male mice inheriting the wild-type
129/SvEv ChrY by natural breeding do not exhibit the
deficiency in iNKT cell numbers. This strongly suggests
the presence of a unique translocation or deletion in the
ChrY of IFNapR1”~ male mice. Interestingly, male
founders transmitting both the decrease in iNKT cells
and the Sry deletion were derived from the same 129/
SvEv ESC line, suggesting that phenotypic variation as-
sociated with ChrY transmitted by male founders from
this line may reflect non-naturally selected ChrY genetic
variation [56,57].

There is a documented association between ChrY and
susceptibility to infectious diseases in mice and humans.
We have shown that natural genetic variation in ChrY
influences the survival rate of male B6-ChrY consomic
mice infected with coxsackievirus B3 (CVB3) [52]. Fur-
thermore, using the FCG model, we showed that com-
pared to GDX XX mice, GDX XY mice exhibited less
severe CVB3-induced myocarditis, an inflammatory heart
disease that predominates in both men and male experi-
mental mice [58,59], indicating that myocarditis suscepti-
bility is influenced by ChrX and/or ChrY [51]. Then, using
B6-ChrY consomic mice, we found that myocarditis sever-
ity was influence by natural genetic variation in ChrY and
specifically associated with copy number variation in ChrY
multicopy genes [60]. In humans, an association has been
made between ChrY haplogroup and AIDS progression in
HIV-infected men. Among European Americans, men
inheriting ChrY haplogroup I show accelerated progres-
sion to AIDS and related death, as well as delayed HIV-1
viral suppression during HAART therapy, compared to
other ChrY haplogroups [61]. A genetic evaluation of
ChrY haplogroup I has not identified the particular gen-
etic variant associated with AIDS progression [62].

Animal models of multiple sclerosis, including ex-
perimental allergic encephalomyelitis (EAE) and the
cuprizone-induced demyelination model, have been
widely used to explore the effects of ChrY on the sexual
dimorphism in disease susceptibility. The observed ef-
fects have been highly dependent on the strain of mice
used, the method employed to study sex Chr effects,
and the disease model. In the FCG model, GDX XX SJL
mice exhibited greater severity in EAE compared to
GDX XY SJL mice, regardless of their gonadal type,
suggesting that increased EAE in XX mice is due to the
XX vs. XY sex chromosome complement difference, ei-
ther through an XX EAE promoting effect relative to a
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single X or through an inhibitory effect of ChrY com-
pared to having two ChrX [63]. Subsequent studies in
the ChrY consomic model extended the findings from
the FCG model by pointing to an inhibitory effect by
the SJL ChrY on EAE susceptibility relative to the other
SJL ChrY consomic strain studied [50]. Furthermore,
the generation of SJL FCG bone marrow chimeras iden-
tified an effect of XY on CNS neurodegeneration,
where having an XY CNS confers greater spinal cord
and cerebellar pathology in SJL chimeric mice reconsti-
tuted with the same immune system, but differing in
the sex Chr complement in the CNS [64]. When EAE
was studied in the B6 FCG model, no difference in dis-
ease severity was observed between the genotype com-
binations [63]. In contrast, B6-ChrY consomic stains of
mice identified a robust difference in EAE severity
driven by polymorphic differences in ChrY and revealed
varying degrees of sexual dimorphism in EAE severity
across the consomic strains when compared to B6 fe-
male mice [60]. In the cuprizone CNS demyelination
model, inherent sex differences exist in remyelination
that persist after GDX of adult mice. B6 GDX male
mice remyelinate to a lesser extent compared to GDX
female mice [65], in that the rate of remyelination and
the number of proliferating oligodendrocytes is de-
creased in FCG B6 XY vs. XX mice of both gonadal
sexes [66].

ChrY aberrations in cancer

The vast majority of cancers have higher incidence and
age-adjusted mortality rates in males compared to fe-
males [67,68]. ChrY abnormalities, including loss or gain
of the entire Chr, long arm deletions, and transcriptional
deregulation of ChrY genes, have been reported for nu-
merous cancers [69]. In humans, the loss of ChrY from
peripheral blood mononuclear cells (PBMC) is associ-
ated with risk of all-cause mortality and risk of cancer
not driven by the hematopoietic system, with the median
survival time reduced by 5.5 years among men with
ChrY loss in PBMC [70]. The ChrY anomalies primarily
occur within the cancer cells of the individual but may
also appear in non-tumor cells at a low frequency, sug-
gesting that ChrY abnormalities in cancer occur through
a post-zygotic mechanism. Importantly, although the
loss of ChrY from bone marrow-derived cells is consid-
ered to be an age-related event, an age-independent loss
of ChrY is also a tumor associated abnormality.

The loss of ChrY has been frequently observed in
prostate cancer, which is among the leading causes of
cancer deaths among American men [71]. An experi-
mental mouse model was generated to study the effects
of ChrY on the tumorigenicity of the human prostate
cancer cell line PC-3, which lacks ChrY. When a human
ChrY was incorporated into this cell line, tumor
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suppression was observed in nearly all the athymic nude
mice studied [72]. A bacterial artificial Chr microarray,
containing clones from human ChrY, was used to iden-
tify a common deletion in Ypll.2 in prostate tumors
[73] that contains about 30-60 copies of the TSPY gene.
TSPY expression is restricted to testicular tissue and its
primary physiological function remains ill defined, but it
may participate in germ cell proliferation and meiosis
[74]. Copy number variation (CNV) in TSPY in PBMC
was also associated with the incidence of prostate cancer
[73]. The dysregulation of TSPY expression has been
linked to a number of other cancers [75], suggesting that
CNV and the expression of TSPY may contribute to
tumor progression in men. Thus, while the role of ChrY
in cancer formation and progression remains unclear,
ChrY genes or elements may be important for prevent-
ing the transformation of cells.

Regulation of autosomal gene expression by ChrY in males
Studies in Drosophila have identified global gene regula-
tory properties by ChrY, which has recently been
reviewed in detail elsewhere [76]. There is also emerging
evidence that the mammalian ChrY is a member of the
regulatory genome in males and directly influences auto-
somal gene expression and thereby may play an import-
ant role in male physiology and disease states. In a
mouse model of atherosclerosis, which exhibits a male-
biased sexual dimorphism, the combined analysis of
quantitative trait loci (QTL) mapping with gene expres-
sion profiling (eQTL) of bone marrow-derived macro-
phages from (AKR x DBA) F, cohort identified a strong
sex bias in gene expression [77]. Remarkably, >30% of
the differentially expressed genes exhibited a male or fe-
male expression bias. Furthermore, whereas the majority
of cis-eQTLs were shared between males and females,
trans-eQTLs were primarily sex-specific. In males, ChrY
represented a hotspot for trans-eQTLs, with 334 ChrY
eQTLs identified. Unlike QTL mapping of autosomes
and ChrX, it is not possible to associate a narrow linkage
peak with a particular trait, since the majority of ChrY
does not undergo recombination, thus restricting the
linkage unit to the entire non-PAR region of ChrY.
Nonetheless, this study led to the characterization of
ChrY as a global regulator of genome-wide gene expres-
sion in mice [77].

Using B6-ChrY consomic strains of mice, we demon-
strated the magnitude of ChrY’s ability to act as a
trans-eQTL and epigenetically regulate the transcrip-
tome, particularly in relation to the expression of alter-
natively spliced isoforms, in CD4" T cells [60]. We also
found that ChrY exerts cell-type-specific effects on
gene regulation depending on the autosomal back-
ground of the mice. ChrY had a greater influence on
the transcriptome of macrophages compared to CD4"
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T cells in SJL-ChrY consomic mice, in which the sexual
dimorphism in EAE is primarily due to macrophage
function [78-80]. An analysis of CNV in ChrY multi-
copy genes identified an inverse correlation between
copy number and the upregulation of genome-wide
gene expression enriched for chromatin remodeling
genes, thus providing a link between CNV and the
ChrY trans-eQTL regulatory properties [60]. The multi-
copy genes associated with the regulatory properties of
ChrY, including Sly, Sstyl, Ssty2, and Rbmy [11], have
testis-specific expression patterns, thus contributing to
the possibility that CNV in these genes may have epi-
genetic consequences in tissues where they are not
expressed, such as immune cells. ChrY polymorphism
also underlies differential gene expression in cardio-
myocytes and mediates the hypertrophic response of
these cells to post-pubertal testosterone [31]. This re-
sponse was further shown to be mediated by an effect
of ChrY polymorphism on the differential distribution
of androgen receptors in the heart, accompanied by dif-
ferences in chromatin architecture [81], suggesting the
genetic differences in ChrY can mediate chromatin dy-
namics in this organ [31].

In human cells, ChrY simple sequence repeats have
enhancer blocking activity [82], demonstrating a regula-
tory role for ChrY in coordinated gene expression [83].
Furthermore, the link between susceptibility to coronary
artery disease and ChrY haplogroup I occurs in parallel
with distinct autosomal and ChrX transcriptional pro-
files in macrophages [46], indicating that ChrY may in-
fluence susceptibility to coronary artery disease by
regulating the gene expression profiles of pathogenic im-
mune cells in men.

Transgenerational traits and paternal parent-of-origin
(POO) effects linked to ChrY

The inheritance of transgenerational changes in pheno-
types allows for organisms to rapidly transmit epigenetic
information to their offspring and is postulated to be a
factor accounting for the missing heritability underlying
susceptibility to complex diseases [84]. The majority of
evidence for transgenerational epigenetic inheritance in-
volves environmentally induced phenotypes that are ma-
ternally transmitted to offspring [85]. Several studies
have also documented transgenerational environmental
effects arising from epigenetic modifications in male
germ cells [86-90]. Interestingly, evidence for paternal
transgenerational genetic effects on the transmission of
phenotypes to female offspring in the absence of altered
environmental stimuli has been documented and linked
to ChrY [84]. Using consomic strains of mice while con-
trolling for effects of social and environmental factors,
this study found that transgenerational effects on various
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physiological and behavioral traits are common among
female offspring of sires with different ChrYs.

X-Y intragenomic conflict has been proposed as a
mechanism that may influence the structure of the
sperm epigenome and contribute to fetal development
[91]. In mice, CNV between the Slx/Sixl1/Sly [92,93]
and Sstx/Sstyl [94] multicopy gene homologs contrib-
utes to X-Y intragenomic conflict. X-Y intragenomic
conflict causes sex-ratio distortion in favor of the sex
chromosome harboring more copies of the distorting
gene [92,93,95]. In addition, X-Y intragenomic conflict
leads to sperm head defects [6,7,96-99], as well as altered
chromatin remodeling and sex chromosome gene ex-
pression in developing spermatids [91,100-102]. In
B6-ChrY consomic strains of mice, we used the
current information on the predicted number of B6
ChrY multicopy gene families with ChrX homologs,
including Sly, Rbmy, Sstyl, Ssty2, Rbm31y, and Srsy
[10], to investigate the extent of CNV in these multi-
copy ChrY genes among the B6-ChrY consomic panel
of mice [11]. Phenotypes associated with CNV be-
tween X-Y homologs, including sex-ratio distortion
and sperm head abnormalities, were identified in B6-
ChrY consomic strains of mice inheriting a M. m.
domesticus ChrY. Multiple regression analyses be-
tween each of these phenotypes and ChrY multicopy
gene number identified a significant relationship be-
tween Sly, Sstyl, Srsy, and Rbmy CNV, supporting a
role for X-Y intragenomic conflict during spermato-
genesis among B6-ChrY M. m. domesticus consomic
strains.

A paternally transmitted POO effect on EAE suscepti-
bility in female offspring was first identified among F,
intercross progeny generated from EAE-susceptible SJL/
J (S) and EAE-resistant B10.S/SgMcd] (B) mice [49].
Central nervous system infiltration and damage were
only found to be different in female mice from the BS x
BS intercross, whose grandsires and sires possessed the
SJL/] ChrY. Female offspring of B6-ChrY consomic
strains of mice exhibited a continuous distribution in
EAE severity across the strains, consistent with quantita-
tive inheritance. Analyses between EAE cumulative dis-
ease score with sex ratio and sperm head abnormalities
identified a significant relationship, thus providing sup-
port for X-Y intragenomic conflict as the underlying factor
driving the paternal POO effect on EAE among female
offspring of B6-ChrY consomic mice [11]. Whether X-Y
intragenomic conflict is the result of CNV in Sly and
Sstyl, which are the ascribed mediators of X-Y intrage-
nomic conflict [93,94], or whether other ChrY multicopy
genes contributes to this phenomenon, remains to be
determined.

The mammalian sex chromosome interaction is rem-
iniscent of interactions between the ChrX and ChrY-
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encoded multi-copy genes Stellate (Ste) and Suppressor
of Stellate (Su(ste)) in Drosophila. Deletions of the Dros-
ophila Y-linked Su(ste) locus cause spermatogenetic phe-
notypes, and it has been suggested that interactions
between Ste and Su(ste) during spermatogenesis might
influence the sex-ratio through the differential viability
of X-bearing and Y-bearing gametes [103,104]. However,
the mechanisms through which Su(ste) suppresses the
Ste locus on ChrX remain poorly elucidated. Similarly,
the mechanism by which ChrY CNV impacts the pater-
nal POO effect on EAE in female offspring remains
unknown.

Whether X-Y intragenomic conflict occurs in humans
remains unknown. Nonetheless, families of probands
with female-biased sexual dimorphism in autoimmune
disease prevalence (multiple sclerosis, systemic lupus er-
ythematosus, rheumatoid arthritis, and pauciarticular
onset juvenile rheumatoid arthritis) exhibit a female-
biased sex-ratio, whereas families of probands affected
with non-sexually dimorphic autoimmune diseases (sys-
temic onset juvenile rheumatoid arthritis and type 1 dia-
betes) exhibit unbiased sex-ratios, suggests that X-Y
intragenomic conflict may play a role in autoimmune
disease susceptibility in humans [11]. Furthermore, as in
Drosophila and mice, the human ChrY contains over
10 Mb of ampliconic sequence containing multicopy
gene families critical for spermatogenesis, some of which
are amplified versions of ChrX homologs with testis-
specific expression patterns, that represent potential
candidates for X-Y intragenomic conflict [105].

Conclusions

Differences between male and female physiology and be-
havior are more often the rule than the exception, and
experimental animal models have contributed greatly to
our current understanding of adult sexual dimorphisms
as a function of sex hormones and sex Chrs. It is well
established that ChrY protein-coding genes are critical
for the sexual development and fertility of males. ChrY
also has a long-standing history in regulating differences
in brain and behavior between the sexes [25]. The con-
tribution of ChrY to phenotype diversity beyond those
traditionally ascribed is rapidly growing, yet insight into
the mechanistic basis whereby ChrY polymorphism me-
diates genome-wide gene expression and sex differences
is still speculative. While differential gene expression of
ChrY-encoded genes, such as Sry in the brain, may con-
tribute to ChrY’s gene regulatory capacity [106], this
cannot explain the phenotypic differences among tissues
lacking detectable expression of ChrY-encoded genes. Of
particular interest will be to further explore the contri-
bution of CNV between the homologous X and Y multi-
copy genes on genome-wide gene regulation and disease
susceptibility in mice [60], which has also been proposed
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to contribute to sex differences in physiology and disease
among other mammals, including humans [83]. In fact,
a similar genetic mechanism has been established for
ChrY of Drosphila subspecies, supporting the existence
of an evolutionarily conserved mechanism of gene
regulation by ChrY [76]. Future investigations into the
genetic and molecular mechanisms that establish ChrY
as a member of the regulatory genome in males, and as
a factor influencing paternal POO effects in female off-
spring, will be aided by the sequencing efforts put forth
for mammalian ChrYs [107-109], especially mouse [10].
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