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Abstract

Background: Sex is an important but understudied factor in the genetics of human diseases. Analyses using a
combination of gene expression data, ENCODE data, and evolutionary data of sex-biased gene expression in
human tissues can give insight into the regulatory and evolutionary forces acting on sex-biased genes.

Methods: In this study, we analyzed the differentially expressed genes between males and females. On the X
chromosome, we used a novel method and investigated the status of genes that escape X-chromosome inactivation
(escape genes), taking into account the clonality of lymphoblastoid cell lines (LCLs). To investigate the regulation of
sex-biased differentially expressed genes (sDEG), we conducted pathway and transcription factor enrichment analyses
on the sDEGs, as well as analyses on the genomic distribution of sDEGs. Evolutionary analyses were also conducted on
both sDEGs and escape genes.

Results: Genome-wide, we characterized differential gene expression between sexes in 462 RNA-seq samples and
identified 587 sex-biased genes, or 3.2% of the genes surveyed. On the X chromosome, sDEGs were distributed in
evolutionary strata in a similar pattern as escape genes. We found a trend of negative correlation between the gene
expression breadth and nonsynonymous over synonymous mutation (dN/dS) ratios, showing a possible pleiotropic
constraint on evolution of genes. Genome-wide, nine transcription factors were found enriched in binding to the
regions surrounding the transcription start sites of female-biased genes. Many pathways and protein domains were
enriched in sex-biased genes, some of which hint at sex-biased physiological processes.

Conclusions: These findings lend insight into the regulatory and evolutionary forces shaping sex-biased gene expression
and their involvement in the physiological and pathological processes in human health and diseases.
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Background
Despite sex being an important epidemiological factor in
disease prevalence and severity, genetic studies often do
not explicitly study sex as a variable. Studies into the genes
that have sex-biased gene expression, both on the auto-
somes and on the X chromosome, and into the regulatory
and evolutionary forces that sculpt these genes to be sex
biased will have implications for both evolutionary and
medical genetics. In this study, we used RNA-Seq data
from the Geuvadis consortium [1] to determine the sex-

biased gene expression in the lymphoblastoid cell line
(LCL). Evolutionarily, sex-biased gene expression may be
the result of sexual or natural selection, including possibly
differing selection pressures between sexes [2]. Studies of
sex-biased gene expression on the X chromosome and on
autosomes can help us understand the different types of
selection pressures at play and the extent to which they
can influence sexual dimorphism. In terms of gene regula-
tion, many epigenetic marks may be used to study the
gene regulation of sexually dimorphic gene expression.
Chromatin accessibility refers to the eviction of nucleo-
some, allowing transcription factors to bind, and regions
of chromatin accessibility are regarded as regions that
contain important regulatory elements such as promoters
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and enhancers [3]. Promoters and enhancers are further
marked by the presence of specific histone modifications,
such as H3K4me3. In addition, replication timing refers to
the order in which segments of DNA are replicated and
have been found to be correlated with level of transcrip-
tion and evolutionary conservation [4]. Recently, all of
histone modification marks [5], chromatin accessibility
[6, 7], and replication timing [7] have been found to
have sex-specific elements, leading to questions about
what we can learn about gene regulation and evolution
from these genomic features. In this study, we use a
variety of genomic features and evolutionary measure-
ments to investigate regulatory and evolutionary forces
on sex-biased genes.
Like all gene regulation, regulation of sex-biased gene

expression is complex and dependent on a multitude of
factors such as transcription factors, enhancers, super
enhancers, nuclear positioning, and 3D structures of the
chromatin [8]. In addition, sex-biased gene regulation is
different on the X chromosome compared to the auto-
somes. On the X chromosome, XIST, a long non-coding
RNA, regulates the inactivation of one of the X chromo-
somes in females. X inactivation governs the amount of
gene expression in females and is one of the main fac-
tors determining sex-biased gene expression on the sex
chromosome. Genes that escape X inactivation tend to
be female biased in their gene expression but may also
be male biased [9]. Despite the amount of knowledge we
have about X inactivation, not all genes that escape X
inactivation have been found: recent studies highlighted
the variation among individuals in the genes that escape
X chromosome inactivation (XCI) (escape genes) [10]. In
this study, we classify all the escape genes in the 246
females using a statistical method that tests whether the
allelic expression of X-linked genes are skewed outside
of the range expected due to the sample clonality.
On autosomes, less is known about sex-biased gene

expression. Kukurba et al. [6] detected sex-biased chro-
matin accessibility, defined as regions of the genome
where males and females have different height of chro-
matin accessibility peaks. These regions correspond to
genes regulated by sex-specific expression quantitative
trait loci (eQTL) and were enriched in genes with sex-
biased expression, implying that the accessibility and 3D
structure of chromatin may play a role in sex-biased gene-
expression (6). Topologically associating domains (TADs)
not only delineate the 3D boundaries of transcription
but also correspond to boundaries of replication timing
domains [11]. On the human X chromosomes, escape
genes tend to be clustered in TADs and the actively
transcribed X chromosome (Xa) has an orderly replication
timing whereas the inactivated X chromosome (Xi) was
found to have random replication timing [7]. This corre-
sponds well with the genome-wide observation that late

replication and transcriptionally inactive regions on the
autosomes are also replicated in an unstructured manner,
suggesting that a strict replication timing program is
involved in gene regulation [7]. In that vein, replication
timing has been found to be correlated to levels of tran-
scription and level of evolutionary conservation [4]. In
this study, we investigate whether there are differences
in replication timing in male- and female-biased genes,
and whether specific regions of the chromosomes are
enriched in sex-biased gene expression, both linearly
along the chromosome and in the 3D topologically
associated domains (TADs).
Evolutionarily, many forces affect the evolution of sex-

biased gene expression genome-wide. Rice and Chippindale
[12] have proposed that sexual antagonism is a driving force
in sex-biased gene expression genome-wide, as sex-biased
gene expression would maximize the fitness of both sexes.
Mank et al. [13] showed that in some species, pleiotropy
affects the ability of sex-biased genes to resolve the sexual
antagonism and that sex-biased genes evolve more slowly
due to pleiotropy. In Drosophila, male-biased genes have
higher recombination rates, in addition to higher dN/dS
ratio [14], a phenomenon attributed to the male genes
being under positive selection and resolving sexual
antagonism through higher rates of recombination [14].
As the Mank and Hultin-Rosenberg study used expression
data from chickens and mice, it is not clear whether this
trend holds in humans. On the X chromosome, genes
have evolved in evolutionary strata, where genes of similar
evolutionary age cluster in recombination blocks due to
the gradual loss of recombination between these blocks
and the Y chromosome [15]. The strata can be further
grouped into X-added regions (XAR) and X-conserved
region (XCR). Although it is known that genes that escape
X inactivation are more likely to be found in younger
evolutionary strata on the X chromosome [10], it is not
clear whether sex-biased gene expression also follow that
pattern. As well, there has been conflicting reports on
whether genes that escape X inactivation (escape genes)
experience different amounts of selection pressure than
genes that do not [10, 16]. We also seek to answer these
questions in this study.
Overall, we aimed to identify the genes with sex-biased

expression on both the autosomes and the X chromosome
in 462 samples and to investigate the regulation and
evolutionary forces acting on such genes. On the X
chromosome, we used a novel method that takes into
account the clonality of the LCLs in order to demarcate
genes into silent genes that are subject to X chromosome
inactivation and ones that escape XCI (escape genes). On
the autosomes, we used a method tailored to RNA-seq
data to call differentially expressed genes between the
sexes. We investigated selection pressure experienced by
genes that escape XCI, as well as sex-biased genes, taking
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into account a variety of factors such as the level of gene
expression, dN/dS, and pleiotropic constraint as measured
by breadth of gene expression across tissues. Genome-
wide, we investigated the markers of gene regulation such
as chromatin accessibility, replication timing, 3D structure,
and their role in regulating sex-biased gene expression. In
addition, we performed pathway analyses and transcription
factor enrichment analyses in order to gain insight into
the diseases that the sex-biased genes are enriched in.
In the end, these data will give us more understanding
of the genes that are sex biased, how they are regulated,
and the evolutionary pressure they face.

Methods
Identifying monoallelic expression of X-linked genes
With the overall aim of characterizing the number of
genes that undergo X chromosome inactivation (XCI)
and the variability of that number in our study population,
we performed variant calling on RNA-Seq data to identify
the genes subject to XCI. RNA-seq data from the Geuvadis
consortium [1] was used, which included whole transcrip-
tome sequencing data on 462 individuals from Northern
European from Utha (CEU) and Yoruba (YRI) populations.
Genotype data of the same group of individuals were
downloaded from the 1000 Genomes Project Phase 3
data on November 26, 2014. We adapted the method
from Lappalainen et al. [1] to determine whether a gene
is expressed from one or both alleles. SAMtools was used
for quality control [17], and we followed the Genome
Analysis Toolkit (GATK) RNA-seq best practices on
variant calling to call alternative alleles [17–19]. The
quality filtering criteria were as follows:

� Read with distance to reference (NM) ≤ 6 and
mapping quality (MQ) > 175 were kept.

� Sites with less than 20-fold coverage were filtered out.
� Regions with known RNA editing site based on the

database DARN [20] and non-uniquely mappable
sites downloaded from UCSC [13] were filtered out.

Using the criteria above and examining only genotypically
heterozygous sites, we obtained 10,369 exonic SNPs in 246
females. Two hundred thirty-four genes contained enough
data to be classified into escape or non-escape genes.

Characterization of XCI
Allelic ratios have previously been used to ascertain the
escape status of genes [9]. In monoclonal samples, escape
genes would likely have biallelic expression whereas silent
genes would have mono-allelic expression. In clonal cell
lines, the silenced genes are expected to match the clonality
of the cell lines while escape genes are not expected to [9].
In order to account for the skew in allelic ratio caused by
polyclonality in LCL [21], we used a curated list of known

silent genes [9] to estimate the allelic ratio in silent genes.
For each individual, we estimated the mean and standard
deviation of allelic ratio from the list of known silent genes,
which gave us an estimate of allelic ratios that reflect that
individual sample’s clonality. At biallelic sites, the allelic
ratios were calculated as

allelic ratio ¼ coverage of the major allele=total coverage at that site:

The mean and standard deviation of allelic ratios in the
known silent genes were used to form the normal distri-
bution, against which we tested the skew in allelic ratio in
the other genes. For a given individual, if the allelic ratio
of a gene were significantly different than the allelic ratio
calculated from silent sites, then it is designated as an
escape gene in that individual. Population-wide, if gene is
designated as an escape gene in more than 30% of the
individuals, we classified this gene as an escape gene
overall. The 30% cutoff was picked based on maximizing
sensitivity and specificity in calling known silent and escape
genes. Based on this 30% cutoff, the misclassification rate
of known escape genes is 3% and the area under curve
(AUC) is 0.92 (Additional file 1: Figure S1).

Sex-biased gene (sDEG) characterization
We used the R package TweeDESeq [22] to compare
gene expression between males and females. TweeDESeq
first normalizes the raw counts of RNA-Seq reads, and
then fits the RNA-Seq count data to a family of flexible
distributions that can accommodate a variety of shapes
of count distributions, such as tail heavy, Poisson,
and negative binomial. This package takes advantage
of the increased sample size to estimate two parame-
ters of count distribution using maximum likelihood.
Benjamini-Hochberg false discovery rate (FDR) adjusted
P value of 0.05 was used as a cutoff, where genes with
adjusted P values below the cutoff were determined as
having sex-biased expression. This was performed for
all samples together, and for the CEU population alone
(N = 338, 161 males, 177 females) and the YRI population
alone (N = 124, 55 males, 69 females).

Transcription factor binding analysis
Information on transcription factor binding sites (TFBS)
based on a combination of evidence from ChipSeq data
and DNase hypersensitive sites was downloaded from
ENCODE [23]. The binding sites of these transcription
factors were separated into proximal transcription factors,
which are sites within 2 kb of the transcription starting
site (TSS) of genes, and distal TFBS, which were all other
TFBS. We were interested in the enrichment of proximal
TFBS in the proximal regulatory regions of sDEGs, where
sDEGs were defined as genes with nominal P value < 0.05
in the DEG analysis. We performed a permutation test

Shen et al. Biology of Sex Differences  (2017) 8:35 Page 3 of 13



where we permuted the gene list 1000 times from a refer-
ence gene set of all ENSEMBL genes so that each time we
have a randomly drawn gene list that contain the same
number of genes as the input sDEG list. We counted the
binding of each TF in the proximal regulatory region each
time. This formed the null distribution against which we
evaluated the observed TF binding counts. We performed
this permutation test for both the female-biased genes,
male-biased genes, and both combined. Out of the 91
ENCODE cell lines used, 38 were female, 26 male, and
27 unable to be classified as either.

Functional and pathway enrichment analysis
Functional enrichment analyses for escape genes and for
sex-biased genes were performed using the ToppFun
function of the ToppGene suite [24](accessed on July 28,
2015 from https://toppgene.cchmc.org/enrichment.jsp).
The 14 categories tested ranged from GO terms, disease
gene sets to molecular and biochemical pathways. ToppFun
also has databases of coexpression gene sets, where genes
that are coexpressed are curated from MSigDB, gene
expression atlas, or literature.
For genes that are differentially expressed between the

sexes, an additional pathway analysis was performed using
Gene Set Enrichment Analysis (GSEA) [25]. In this case, we
ranked the genes by log2 fold change in gene expression
between sexes and used GSEA’s “pre-ranked gene” option
to look for pathways that are enriched in MSigDB. Because
of GSEA’s ability to take rank into account, this analysis
allowed us to detect the pathways in which the male-biased
genes are upregulated separately from the pathways female-
biased genes are enriched in, without having to separately
evaluate each. As well, GSEA allowed for input of custom
gene sets, from which we can determine whether the pre-
ranked list of genes is enriched in these gene sets. We input
three custom gene sets curated from the following sources
involving disease genes ranging from systemic lupus
erythematosus (SLE_YANG) [26], rheumatoid arthritis
(RA_2104) [27] to schizophrenia [28].

Analysis of selection pressure
Ratio between nonsynonymous and synonymous substitu-
tions (dN/dS) can be used as a measure of selection [16].
We obtained dN/dS for macaque-human orthologs from
ENSEMBL release version 83 [29]. On the X chromosome,
we were interested in whether the selection pressure on
escape genes differed than those on silent genes. Factors
that have been shown to influence selection pressure of
X-linked genes include the evolutionary strata a gene is
in, whether it has a homolog on the Y chromosome and its
gene expression level. We therefore tested the difference
in selection pressure between escape and silent genes first

using univariate regression, and then using the multiple
regression model allowing for covariates:

y e b0þ b1x1þ b2x2þ b3x3þ b4x4þ b5x5þ e

where y is dN/dS for a X-linked gene. x1 is a discrete
variable that denotes whether the gene is part of the X
added region (XAR) vs X conserved region (XCR). x2 is
a discrete variable indicating whether the gene is part
of an XY pair, x3 is a continuous variable denoting the
average gene expression of the X-linked gene, x4 denotes
the escape status in two levels (escape gene or non-escape
gene), x5 denotes whether it was classified as a disease
gene in OMIM genes [30], and e denotes the error term.
On the autosome, we were interested in the amount of

selection pressure experienced by sex-biased genes. The
breadth of gene expression is one measure of pleiotropy
and a factor that have been shown to affect the amount
of selection experienced by a gene [13]. Gene expression
breadth in this study is measured by the number of tissues
a gene is expressed in. We downloaded the FANTOM5
consortium data from Gene Expression Atlas on September
30, 2015 and tallied up the number of tissues a gene is
expressed in to obtain a gene expression breadth value
ranged between 1 and 56. Out of the 1309 samples used
in FANTOM5, 304 were female, 429 male, 208 mixed,
and 449 are unknown. We used univariate regression to
test the difference in selection pressure and gene expres-
sion breadth between the sex-biased gene groups (female
biased, male biased, and non-biased). We then investigated
whether gene breadth varied between male- and female-
biased genes while adjusting for covariates such as dN/dS
using the linear regression with multiple covariates:

y e b0þ b1x1þ b2x2þ b3x3þ e

where y represents gene breadth, x1 is the discrete variable
that denotes sex bias (female biased, male biased, and non-
biased), x2 is the continuous variable dN/dS between ma-
caque and humans, x3 gene expression averaged across all
samples, and e is the error term. Furthermore, the correl-
ation between sex bias of gene expression on dN/dS or gene
expression breadth were tested with univariate regression

y e b0þ b1x1

where y represents gene expression breadth, or dN/dS
and x1 is the discrete variable that denotes sex bias (female
biased, male biased, and non-biased). This was tested both
in the LCL data and the Genotype-Tissue Expression
Project (GTex) consortium data.
We further analyzed selection pressure on androgen-

regulated and estrogen-regulated genes. Androgen-regulated
genes were obtained from [31] while estrogen-regulated
genes were downloaded from ESR1 from ENCODE
experiment (ENCFF029ZUJ).
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Genomic distribution of sDEG and replication timing
Genomic distribution of sDEGs were investigated in two
ways: through using GSEA on positional gene sets (C1 in
MSigDB) and through analysis of topologically associated
domains (TADs). GSEA analysis was performed as docu-
mented above. TADs were downloaded from [11]. Entropy
was calculated for TADs that contained sex-biased genes.
Entropy per TAD was calculated by –pi × log(pi), where
pi = proportion of sex-biased gene in TAD i.
In order to investigate the relationship between repli-

cation timing and sex bias of genes, replication timing
for LCL was downloaded from Koren et al. [7] and cell
type-specific replication timing (wavelet-smoothed signals)
was downloaded from ENCODE [23] for cell types IMR-90
(female), SK-N-SH (female), and NHEK (sex undefined).
In all cases, lower values denote later replication. We
calculated the average replication timing per gene as:

Replication timing per gene ¼
P

iR� bpOverlap
totalBpInGene

Where R refers to the replication timing value, bpOverlap
refers to the overlapped basepairs between replication
timing domains and gene, and totalBpInGene refer to
the total number of basepairs in the gene. For cell lines
IMR-90, SKN-N-SH, and NHEK, replication timing is
measured across each cell line, each of which is composed
of a single sample. Replication values vary between 0 and
1 and are normalized from sequence read number per cell
cycle, with bigger replication values representing earlier
replication. The exception is LCL, where replication timing
data is gathered from six samples (two females, three
males, one unknown). The replication timing value is aver-
aged per gene across all samples and the replication values
vary between − 1 and 1, with bigger replication timing
values representing earlier replication.
We analyzed the correlation between replication timing

and sex bias of gene expression in several ways. We first
performed a univariate regression between per gene repli-
cation timing values in three ENCODE cell lines IMR-90,
SKN-N-SH, and NHEK and the log2 fold change in gene
expression between females and males in the GTex con-
sortium. In addition, we also used univariate regression to
test the difference in the mean per gene replication timing
value between female biased, male biased, and unbiased
using replication data from [7] and gene expression data
from the Geuvadis consortium, as they are both based on
the LCL.

Results
Differentially expressed genes (sDEGs) between sexes
Using the package TweeDESeq and a Benjamini-Hochberg
FDR cutoff of 0.05, we identified 587 genes genome-wide
that are differentially expressed between males and females

in the LCLs, which accounted for 3.2% of the genes
surveyed. In total, the numbers of male- and female-biased
genes found are similar: 318 genes are found to be female
biased and 269 genes male biased. On the X chromosome,
however, there are more female-biased genes: 64 X-linked
genes are female biased and 20 X-linked genes are male
biased.
When sDEGs are analyzed between populations, some

genes are sex biased in both populations, while some are
sex biased in only one population. Sixty-eight genes are
found to be sex biased in YRI, while 510 are found to be
sex biased in CEU population. In YRI, 47 genes are
female biased whereas 21 genes are male biased. In the
CEU population, 300 genes are female biased whereas
210 genes are male biased. Few genes were found to be
sex biased in only one population: 5 genes in YRI and
172 genes in CEU were population-specific sDEGs. The
concordance of sDEGs between the two populations is
65.5%, showing that most sDEGs are common across
the two populations. When the log2fc between female- and
male-biased gene expression, or effect sizes, of the gene
expression bias are compared between the populations,
there is a strong correlation (Pearson’s correlation = 0.71,
P value < 2.1e−16).

Genes that escape XCI are differentially distributed across
evolutionary strata on the X chromosome
We used GATK heterozygous calls on expression data to
determine biallelic expression of X-linked genes in 246
females. We found 35 genes escaping XCI out of 286
genes surveyed. Two hundred fifty-one genes are found
to be lacking of evidence of escaping XCI, including the
110 previously listed silent genes. In accordance with
previous studies, a significantly higher percentage of
genes escaping XCI are found in younger evolutionary
strata (univariate regression, P value = 0.00253) (Fig. 1).

Female-biased gene expression and X chromosome
If sex-biased expression on the X chromosome were due
to genes escaping XCI, then we would expect a significant
overlap between genes that have an expression bias and
genes that escape XCI. We tested this hypothesis and
found a correlation between the log2 fold change in gene
expression between female and male samples and per-
centage of samples in the population that escape XCI
for that gene (Pearson’s R = 0.788, P < 2.2e−16). There is
a slight trend that younger strata are more likely to
have genes that are female biased (univariate regression,
P value = 0.024) (Fig. 2).

Evolutionary pressure on escape genes and sex-biased genes
We measured the evolutionary pressure undergone by
escape genes by comparing the difference in mean
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macaque-human dN/dS between escape and silent genes.
We first performed univariate regression using the single
variable of escape status (classified as escaper or non-
escape genes), and then used a multiple regression model
that accounts for a variety of covariates. No relationship
was found between dN/dS and escape status of a gene
(univariate regression P value = 0.46). This result held when
we expanded our multiple regression model using as covar-
iates whether the gene was part of an XY pair, whether it
was classified as a disease gene from OMIM, whether it
was in the X-added region (XAR) or X-conserved region
(XCR) and the average gene expression level (Fig. 3,
Additional file 2: Table S1). This is true whether we
use the set of genes that we have classified as escape
(multiple regression, P value = 0.92) or the set of genes

that others have classified escape [9] (multiple regression,
P value = 0.74).
Sexual antagonism may be a driving force behind sex-

biased gene expression, and pleiotropy may constraint the
sex-biased gene’s ability to evolve in a way that benefits
both sexes [2]. In this study, we tested the amount of selec-
tion pressure that sex-biased genes are under (estimated by
dN/dS) and its relationship with gene expression breadth
(as a measure of pleiotropy). In our study, dN/dS is not
significantly different between male biased, female biased,
or non-biased genes in LCL as a whole (Table 1). This lack
of difference in dN/dS is also seen when we analyze genes
that are sex biased in tissues in the GTex consortium
(Table 2), or when we analyze the CEU and YRI population
together or separately (Tables 3, 4, and 5). On the other

Fig. 1 Percentage of samples that escape X inactivation across different evolutionary strata. Each data point plots the number of samples that express
both copies of a gene. Strata are organized by evolutionary time and position on the X chromosome, where S1 is the oldest stratum and S5 the youngest
stratum. All genes are supported by at least five data points in the population

Fig. 2 Change in gene expression between female and male samples in across X chromosome strata. Positive log fold changes are classified as
female-biased genes, whereas negative log fold change genes were classified as male-biased genes
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hand, gene expression breadth is negatively correlated with
dN/dS in LCL overall (Table 6), whether we account for
gene expression level and sex bias in gene expression or
not (Additional file 2: Table S2), and whether we use
sex-biased genes found from tissues in the GTex consor-
tium or LCL (Tables 2, 3, 4, and 5). The trend also remains
when we analyze the two CEU and YRI separately (Fig. 4).
Overall, the general trend is a lower, but not statistically
significant, dN/dS in males as compared to unbiased genes
and simultaneously a lower gene expression breadth
in male-biased genes as compared to unbiased genes
(Tables 3, 4, and 5). When we compared genes regu-
lated by androgen to those regulated by estrogen, we
found androgen-regulated genes had higher dN/dS

than estrogen-regulated genes (univariate regression,
P value = 0.0325).

Regulation of sex-biased genes: transcription factor binding
site enrichment and pathway analysis
No transcription factor (TF) was found to be signifi-
cantly enriched in male-biased genes. Using the data on
transcription factor binding sites, nine TFs were found
enriched in the proximal regulatory regions of female-
biased genes: SMARCB1, PPARGC1A, SMARCA4, ELK4,
XRCC4, TFAP2A, TRIM28, WRNIP1, and SMARCC2.
(permutation P value < 0.05, Fig. 5). Pathway analyses on
these transcription factors revealed a variety of pathways
where two or more TFs listed above are involved. These

Fig. 3 Selection pressure dN/dS on escape genes as a measure of the covariates. Coefficients for linear regression of dN/dS, or the amount of selection
pressure, as a function of the following variables. XY pair refers to whether the gene is part of an XY homologous pair, where the coefficient is the genes
that are part of XY pairs compared to genes that are not. XAR or XCR refers to whether the gene belongs on the X added region on the X chromosome
or the X conserved region strata, where the coefficient is for XCR compared to XAR. Escape status refers to whether the gene is classified as an escape
gene, where the coefficient is for escape genes compared to non-escape genes. Average gene expression refers to the average level of gene expression
among 264 female samples. Disease status refers to whether the gene was classified as a disease gene in OMIM

Table 1 Mean nonsynonymous over synonymous rate (dN/dS), gene expression breadth, and their correlations in male, female, and
unbiased genes for LCL samples including both populations

Male Female Unbiased P ANOVA between
all 3

P ANOVA between
sex-biased and
unbiased

P ANOVA between
male and female

dN/dS 0.2332364 0.2773688 0.2813096 0.815 0.634 0.107

Gene expression
breadth

44.72727 43.57561 45.89424 0.0637 0.0259 0.481

Correlation between
dN/dS and gene
expression breadth

Spearman’s
rho = 0.03181803;
P value = 0.6655

Spearman’s
rho = − 0.1276786;
P value = 0.0681

Spearman’s
rho = − 0.01899588;
P value = 0.0499

(All data together)
Spearman’s
rho = − 0.01938879;
P value = 0.0415
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include glucocorticoid receptor regulatory network and
Wnt signaling (Additional file 2: Table S9). Interestingly,
glucocorticoid receptor regulatory network is known to be
a sexually dimorphic pathway in human liver [32].

Genomic distribution and replication timing
Across a variety of cell lines and tissues, female-biased
genes were also more likely to be found in earlier repli-
cation timing regions. Using replication timing from
LCL [7] and sex-biased gene classified using gene
expression in the Geuvadis study, we find female-
biased genes were more likely to be found in earlier
replication timing regions as compared to male-biased
genes (univariate regression, P value = 1.5e−12) or
unbiased genes (univariate regression, P value = 1.81e−8)
(Additional file 1: Figure S2). This trend held regardless of
whether dN/dS and gene expression level were taking into
account as covariates in a multiple regression model
(Additional file 2: Table S4). Additionally, this trend also
held when using genes classified as sex-biased from GTex
consortium and compared to the replication timing values
found in three ENCODE cell lines IMR-90, SK-N-SH, and
NHEK (Fig. 6, Additional file 2: Table S3).
Genome-wide, there is little eVdence of sex-biased

genes clustering in autosomes, although some clustering
is observed on the X chromosome. Using the pathway
enrichment tool GSEA, we found female-biased genes to

be clustered in X chromosome as expected, but also
unexpectedly in chr19q13. Using the same analysis, we
also found male-biased genes to be clustered as expected
on the Y chromosomes and unexpectedly on chr4q12
(Additional file 2: Table S4(a-b)). TAD analysis return
similar results: most TADs do not show a greater than
expected clustering of sex-biased genes (Additional file 1:
Figure S3).

Pathway enrichment
Similar to escape genes, sDEGs overall were over repre-
sented in a variety of disease and functional pathways.
The program ToppFun found B cell lymphoma and
chronic obstructive airway diseases were enriched in
sDEGs (Additional file 2: Table S5(a)). A variety of gene
families were also enriched in sDEGs (Additional file 2:
Table S5(b)). None of the custom disease gene sets were
enriched in sex-biased genes (Additional file 2: Table S6).
When examining female-biased sDEGs, KEGG oocyte

meiosis pathway was found to be over represented
in female-biased genes as expected. Interestingly, a
variety of KEGG metabolic pathways were enriched,
including metabolism of xenobiotics by cytochrome
p450 (Additional file 2: Table S5 (b)). In male-biased sDEGs,
a number of gene families related to immune-related
functions were found to be enriched (Additional file 2:
Table S7(a)). Enriched pathways were also found for
disease genes, including genes involved in AML and
head and neck cancer (Additional file 2: Table S7(b)).

Table 3 Mean nonsynonymous over synonymous rate (dN/dS),
gene expression breadth, and how they vary according to sex
bias of gene expression in LCLs containing both CEU and YRI
population samples

dN/dS
beta

dN/dS
P value

Gene
breadth beta

Gene breadth
P value

Intercept 0.2813 < 2e−16* 45.89 < 2e−16*

Male bias
compared
to unbiased

− 0.048 0.524 − 1.1670 0.3055

Female bias
compared
to unbiased

− 0.00394 0.956 − 2.3186 0.0332

All analyses were carried out using a univariate regression model with sex as
a covariate. Betas denote coefficients in the univariate regression model,
while P value denotes the P value of the coefficient
*Statistical significance at P value < 0.05 cutoff

Table 2 Mean nonsynonymous over synonymous rate (dN/dS), gene expression breadth, and their correlations in male and female
sex-biased genes from the GTex consortium. Beta denotes coefficients in the univariate model

Male bias Female bias P univariate regression
between male and female

dN/dS 0.2648424 0.3001547 0.0133

Gene expression breadth 32.26667 27.70866 0.661

Correlation between dN/dS
and gene expression breadth

Univariate regression
beta = − 0.003392;
P value = 0.0854

Univariate regression
beta = − 0.000999;
P value = 0.362

Table 4 Mean nonsynonymous over synonymous rate (dN/dS),
gene expression breadth, and how they vary according to sex
bias of gene expression in CEU samples only

dNdS
beta

dNdS
P value

Gene breadth
beta

Gene breadth
P value

Intercept 0.2819 < 2e−16* 45.8583 < 2e−16*

Male bias
compared
to unbiased

− 0.087579 0.275 − 0.158 0.874

Female bias
compared
to unbiased

− 0.011096 0.883 − 0.9381 0.409

All analyses were carried out using a univariate regression model with sex as
a covariate. Betas denote coefficients in the univariate regression model,
while P value denotes the P value of the coefficient
*Statistical significance at P value < 0.05 cutoff
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Discussion
Sex bias of gene expression is expected to reflect both
the evolutionary history of genes and their physiological
roles. Our study looked for pathways that sex-biased genes
are enriched in, investigated patterns of gene regulation,
and revealed genomic features that vary with sex-biased
genes. In addition, we characterized the escape status of
X-linked genes taking into account LCL multiclonality,
using a new method that utilized RNA-Seq data.

Evolutionary insights
On the X chromosome, we found that the pattern of
escape tends to vary by strata, with the younger strata
harboring more escape genes, a direction that is consistent
with Ohno’s hypothesis and known literature. This is
similar to results from previous studies [9, 10, 33] and
acted as a proof of concept for our classification and
analysis methods. However, unlike some previous studies
that suggest escape genes are under more purifying selection
[16], the escape and silent genes do not differ in dN/dS
regardless of whether we take into account gene expression
level, breadth of expression, whether they are classified as
disease genes by OMIM, and regardless of whether we use
genes that we characterized as escape or the set of escape
genes from literature. A previous study also using LCL
RNA-Seq data found a similar result [10]. This shows that
despite the possibly different evolutionary pressures faced by
escape and non-escape genes, no difference in dN/dS can
be detected; indicating escape status of the gene is not the
key driver of evolution on the X chromosome.

Many forces affect the evolution of sex-biased gene
expression genome-wide, including on the X chromo-
some. Rice and Chippindale [12] have proposed that
sexual antagonism is a driving force in sex-biased gene
expression. However, Mank et al. [13] showed that in
some vertebrate species, pleiotropy affects the ability of
sex-biased genes to resolve the sexual antagonism and
that sex-biased genes may be constrained to evolve at
the level permitted by the tissue specificity of their gene
expression. In all of mice, chicken [13], and Drosophila
[34], male-biased genes were found to have higher rate
of evolution and higher tissue specificity. We used gene
expression breadth as a measure of pleiotropic con-
straint and found that as in other organisms studied,
genes evolved faster when there is narrower expression
breadth as shown by the negative correlation between
dN/dS and gene expression breadth in both cell line
and tissue data, across the two populations analyzed,
and when taking other factors such gene expression level
into account (Tables 1 and 2, Fig. 5, Additional file 2:
Table S2). This suggests that pleiotropy does indeed con-
strain the evolutionary rate of genes in humans, regardless
of the sex bias of gene expression, which, to our
knowledge, had not been demonstrated in humans before.
However, unlike the case in chicken and mouse [13] and
Drosophila [34], we did not find significantly higher rate
of evolution, as measured by dN/dS, in male biased as
compared female biased or unbiased genes. In fact, the
general trend is a lower dN/dS in males as compared
unbiased genes and simultaneously a lower gene expres-
sion breadth in male-biased genes as compared to unbiased
genes (Tables 3, 4 and 5). It is possible that male-biased
genes in reproductive tissues may have a different pattern,
as many of the fast evolving genes in Drosophila are
sperm-related genes and those may not be detected as male
biased in our dataset. In another human study, Gershoni
and Pietrokovski [35] used 53 tissues from 533 adults in
the GTex consortium to analyze the selection pressure on
sex-biased genes. They found that the greater the number
of tissues a gene is sex-biased in, the greater the rate of
deleterious nonsynonymous mutation, suggesting that very
sex-biased genes are evolving under relaxed selection pres-
sure and experience a lack of constraint. This is different
than our finding of genes experiencing constraint from
pleiotropy regardless of their sex bias in gene expression.
Their study was conducted in many tissue samples, allow-
ing them to quantify the degree to which a gene is sex-
biased across all tissues. They also used a different measure
of natural selection: the number of deleterious nonsynon-
ymous mutations over the number of synonymous mutation
(dN/dS) which may better measure the selection pressure
against deleterious mutations. Overall, although the
Gershoni and Pietrokovski [35] study did not look at
selective constraint from being expressed in multiple

Table 5 Mean nonsynonymous over synonymous rate (dN/dS),
gene expression breadth, and how they vary according to sex
bias of gene expression in Yoruba samples only

dN/dS
beta

dN/dS
P value

Gene breadth
beta

Gene breadth
P value

Intercept 0.280676 < 2e−16* 45.8485 < 2e−16*

Male bias
compared to
unbiased

− 0.020105 0.962 − 19.6818 0.00179*

Female bias
compared
to unbiased

− 0.104992 0.608 0.7515 0.80780

All analyses were carried out using a univariate regression model with sex as a
covariate. Betas denote coefficients in the univariate regression model, while P
value denotes the P value of the coefficient
*Statistical significance at P value < 0.05 cutoff

Table 6 Mean nonsynonymous over synonymous rate (dN/dS)
correlation with gene expression breadth, tested using univariate
regression in LCL, both European and Yoruba population

Beta Std. Error P value

Intercept 0.339 0.030 < 2e−16*

Gene expression breadth − 0.0012821 0.0006289 0.0415
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tissues, but they did reach the interesting conclusion that
extremely sex-biased genes may be under less selective
constraint than unbiased genes, showing that our finding
of pleiotropic constraint regardless of sex bias may need
further study in human tissues under different physio-
logical conditions.

Sex-biased genes
We found more genes with female-biased expression
than male-biased expression on the X chromosome,
similar to other studies [36]. The presence of male-

biased expression on the X chromosomes in LCL was
unexpected, as many of the previously characterized
male-biased genes on the X chromosome were testis
specific. Functionally, the X-linked male-biased genes
in LCL were found to be related to non-reproductive
functions, such as height and cell adhesion. They were
located in strata PAR1 and 2, S1, and S3, S4, with the
majority of PAR1 genes being male biased, similar to
the finding of Tukiainen et al. [37].
The majority of sDEGs found were not population spe-

cific, and there was high correlation in the effect size of

Fig. 4 Change in the nonsynonymous mutation over synonymous mutation ratio against gene expression breadth. We show data from both
European (CEU) and Yoruba (YRI) populations surveyed, separated by sex. Blue line denotes the slope of the line under a linear model, while the
gray shade denotes the 95% confidence interval from the univariate regression model. Beta and P value denotes beta coefficient between gene
expression breadth and dN/dS in the univariate analysis, and the corresponding P value

Fig. 5 Transcription factor binding site enrichment in female-biased genes. The dotted line indicates the 0.05 permutation P value cutoff. Fold change
refers to the number of times a TFBS is enriched in permutations relative to the observed value
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sDEG between the two populations. More sDEGs were
CEU specific than YRI specific, showing that bigger sam-
ple sizes may have led to more population-specific sDEGs
detected. Alternatively, the smaller sample size in YRI may
be the reason that some of the genes are only detected as
sex-specific expression in CEU, and more studies with
higher power are needed to address this issue in future.

Gene regulation and link to disease
GSEA and Toppfun pathway analyses confirmed many
known sex-biased pathways. “KEGG oocyte meiosis” is a
known female-biased pathway that was found to be enriched
for female-biased genes in our dataset. “KEGG metabolism
of xenobiotics by CYP450” is a known sex-dependent
pathway in rats; in humans, some studies suggest differ-
ent metabolic activity of xenobiotics between males and
females with genes in the CYP450 family [38, 39].
Transcription factors binding enrichment analysis

can be used to assess the transcription factors that
may be regulating the gene expression of sexually di-
morphic genes. Eight transcription factors were found
enriched in female-biased genes in our analyses although
this may not uphold after multiple testing correction.
Interestingly, some of the transcription factors are enriched
in “glucocorticoid receptor regulatory network,” a growth
hormone-mediated pathway that is known to be sexually di-
morphic in rats [32]. This pathway is thought to play
a role in inflammatory disease with difference in sex
prevalence [32]. In humans, VGLL3 is a putative
transcription factor that has recently been found to
regulate female-biased inflammatory processes [36],
possibly also playing a role in autoimmune diseases
with a difference in sex prevalence.

We produced a novel finding of association between rep-
lication timing and sex bias of gene expression. It is not
clear why female-biased genes are found in earlier repli-
cation timing regions and male-biased genes in later
replicating regions. Because the replication timing do-
mains are responsive to 3D chromatin changes and the
rearrangement of genes in the cell nucleus, there is the
possibility that female- and male-biased genes are repo-
sitioned spatially in response to different regulation pat-
terns. In fact, in mice liver, sex-biased gene expression
from GH signaling is maintained via sex-dependent
STAT5 binding, correlating with differential chromatin
accessibility between the sexes and sex-biased histone
modification marks [40].

Limitations and future directions
Evolutionarily, many factors affect the evolution of males
and females differently. Mutation rate, effective population
size, recombination rate [41], and pleiotropy [13, 41] all
have been found to be different in male-biased, female-
biased, and unbiased genes. Although we recapitulated the
result that pleiotropic constraint seems to have a greater
effect than sexual antagonism on the evolution of sex-
biased genes, our study is limited to LCLs. As more
expression data on a greater variety of tissues become
available, we can better investigate how pleiotropic con-
straint and other factors such as recombination resolve
sexual antagonism to lead to the fitness landscapes in
human males and females today.
Recent advances in genomics have led to some new

understanding in the regulation of sex-biased genes,
such as differential chromatin accessibility in male and
females [6], expression quantitative trait loci that are sex

Fig. 6 Replication timing in three ENCODE cell lines as a function of sex bias in gene expression. Higher log2 fold change values indicate female-biased
gene expression, while higher replication timing values indicate earlier replication timing. Red and blue points indicate statistically significant female-biased
and male-biased genes, respectively, based on genes classified as sex biased by the GTex consortium. Blue lines indicate the fitted univariate regression lines
for each cell type; P values indicate the statistical significance of the slope
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specific [6, 42] and differential gene expression in a
variety of tissues [35]. However, the picture is far from
complete: it is not clear how and which transcription
factors interact with chromatin modification to impact
gene expression to result in differential gene expression
between males and females, and how replication timing
or other chromosome domains may be involved. With
the advances in genomic technology, we may be inching
closer than ever to resolving the regulatory networks in
males and females in a variety of physiological tissues
and conditions.

Conclusions
Sex-biased genes (sDEGs) are widespread phenomena
across many mammalian species. We show several evo-
lutionary trends affect sDEGs, including more sDEGs in
evolutionarily later strata on the X chromosome and
pleiotropic constraint on their evolutionary rate. We also
discover some candidate TFs that may modify female-
biased sDEGs only. The amount of functional and other
data sources that are now available makes it possible to
look at the features of gene regulation of sex-biased genes,
the pathways they are associated with, and the forces that
help shaping their evolution.

Additional files

Additional file 1: Figure S1. Receiving operator curve (ROC) for using
allele ratio of X-linked genes to predict status of escape of genes in female
samples, on the X chromosome. In this figure, positive means correctly
classifying a known silent gene as silent gene. The AUC for using allele ratio is
0.92. We used a cutoff of 0.3 to delineate genes between escape and silent
genes, as this is the lowest allele ratio at which we have perfect classification
of known silent genes. Figure S2. Female, male and gender non-biased genes
show difference in replication timing in all the cell lines examined (ANOVA,
P value = 0.101). Female biased genes show slightly earlier replication timing
while male biased genes how later replication timing. Y axis denote replication
timing values from Koren et al. (2012). Figure S3. Genome-wide distribution
of entropy for TADs that contain sex biased genes. Lower entropy signifies
better clustering of sex biased genes with other sex biased genes.
Figure S4. Effect size in log2fc of gene expression differences of the
differential gene expression analyzed separately in Utah residents with
Northern and Western European Ancestry (CEU) and Yoruba (YRI) populations.
For clarity, only the genes that are significantly differentially expressed by
sex (sDEG) are displayed. Genes that are found to be significantly
differentially expressed when both CEU and YRI populations are
analyzed together are plotted in orange, while genes that are found to
be sDEGs when YRI samples are analyzed alone are plotted in blue, and
sDEGs in CEU samples are plotted in green. There are strong correlations in
effect sizes between the two populations(Pearson’s correlation = 0.71,
p value < 2.1e-16), and most sDEGs (65%) are shared across the two
populations. (DOCX 47 kb)

Additional file 2: Table S1. Linear regression of dN/dS, or the amount
of selection pressure, as a function of the following variables. Estimate
refers to the coefficient of the covariate, Std.Error referes to the standard
error of that estimate. T value refers to the test statistic of the estimate
and Pr(>|t|) refer to the P value of that covariate. XYpair refers to whether
the gene is part of an XY homologous pair. XAR or XCR refers to whether
the gene belongs on the X added region on the X chromosome or the X
conserved region strata, escape status refers to whether the gene is classified
as an escape gene, and gene expression refers to the average level of gene

expression among 264 female samples. Table S2. Linear regression of dN/dS,
or the amount of selection pressure, as a function of the following variables.
Estimate refers to the coefficient of the covariate, Std.Error referes to the
standard error of that estimate. T value refers to the test statistic of the
estimate and Pr(>|t|) refer to the p value of that covariate. Average gene
expression refers to average level of gene expression among 462 samples.
Gene bias_female refers to whether the gene is classified as female-biased,
and the coefficient refers to the change in dnds between female-biased
genes to genes without sex bias. Gene bias_male refers similarly to genes
classified as male-biased. Gene expression breadth refers to the number
of tissues the gene is expressed in. Table S3. Sex-biased genes (sDEG)
(587 genes) from LCL data and GTex data (1308) and their relationship to
replication timing data in different cell lines, based on the Spearman’s Rho
between replication timing values and log2fc of gene expression between
females and males. Table S4(a). GSEA results for gene regions that are
enriched in female biased sDEGs. Table S4(b). ToppFun results for gene
regions that are enriched in male-biased sDEGs. Table S5(a). Disease gene
sets enriched in sex biased genes, as found by ToppFun. Table S5(b). GO
terms enriched in sex biased genes, as found by ToppFun. Table S5 (c).
Pubmed gene sets enriched in sex biased genes, as found by ToppFun.
Table S5 (d). Pathway analysis of sex biased genes using gene sets
from MSigDBC2, as found by ToppFun. Table S5 (e). Gene families
enriched in sex biased genes, as found by ToppFun. Table S6 (a).
Domains enriched in female biased genes, as found by ToppFun.
Table S6 (b). KEGG pathways enriched in female biased genes, as
found by GSEA. Table S7. Pathway analysis of sex biased genes in
GSEA, using custom gene sets from [26–28, 43]. Table S8 (a). Gene
families enriched in male biased genes. Table S8 (b). MSigDB gene
sets enriched in male biased genes, as found by ToppFUn. Table S9.
Pathways enriched in transcription factors enriched for female biased
genes. (DOCX 49 kb)
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