
RESEARCH Open Access

Oral contraceptives modify DNA methylation and
monocyte-derived macrophage function
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Abstract

Background: Fertile women may be encouraged to use contraception during clinical trials to avoid potential drug
effects on fetuses. However, hormonal contraception interferes with pharmacokinetics and pharmacodynamics and
modifies internal milieus. Macrophages depend on the milieu to which they are exposed. Therefore, we assessed
whether macrophage function would be affected by the use of combined oral contraceptives (OCs) and if this
influence depended on the androgenic or non-androgenic properties of progestin.

Methods: Healthy adult women were enrolled and stratified into two groups: women who did not use OCs (Fs)
and women treated with OCs (FOCs). FOCs were further stratified as a function of androgenic (FOCA+) and non-
androgenic (FOCA-) properties of progestins. Routine hematological, biochemical, inflammatory and endothelial
dysfunction parameters were measured. Monocyte-derived macrophages (MDMs) were evaluated for the
expression and activity of estrogen receptors and androgen receptors, and release of tumor necrosis factor a
(TNFa) was measured from unstimulated and lipopolysaccharide-stimulated cells.

Results: As is already known, the use of OCs changed numerous parameters: the number of lymphocytes, iron
levels, total iron-binding capacity of transferrin, triglycerides, high-density lipoprotein, total cholesterol, and C-
reactive protein increased, while prothrombin time and alkaline phosphatase decreased. Hormonal levels also
varied: cortisol was higher in FOCs, while luteinizing hormone, follicle-stimulating hormone, and testosterone were
lower in FOCs. Asymmetric dimethylarginine, an index of endothelial function, was lower in FOC than in Fs, as
were cysteine and bilirubin. The androgenic properties of progestins affected the activity of OCs: in particular,
white blood cell count, hemoglobin, high-density lipoprotein and calcium were higher in FOCA- than in FOCA+,
whereas percentage oxygen saturation and g-glutamyl transpeptidase were lower in FOCA- than in FOCA+.
Importantly, FOCs had a lower global DNA methylation, indicating that OC may have epigenetic effects on gene
expression. OC did not modify the expression of androgen receptor but increased estrogen receptor a expression,
more considerably in FOCA+, and decreased estrogen receptor b, more considerably in FOCA-. Importantly, the
activation state of estrogen receptor b in FOCs was decreased, while estrogen receptor a was not active in either
Fs or FOCs. Unstimulated MDMs obtained from FOCs showed higher release of TNFa in comparison with Fs. After
lipopolysaccharide stimulation, the release of TNFa was significantly higher in Fs than in FOCs.

Conclusions: OC use induced many changes in hematological and plasmatic markers, modifying hormonal levels,
endothelial function, inflammation index and some redox state parameters, producing a perturbation of the
internal milieu that impacted macrophagic function. In fact, different levels of estrogen receptor expression and
release of TNFa were observed in macrophages derived from OC users. Some of the above activities were linked
to the androgenic properties of progestin. Even though it is not known whether these effects are reversible, the
results indicate that to avoid potential skewing of results only a single type of OC should be used during a single
clinical trial.
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Background
The US Food and Drug Administration encourages the
enrolment of women in clinical trials that test the efficacy
and safety of pharmacological treatments [1,2]. The proto-
col designs emphasize the need for contraception for
women of childbearing potential who participate in drug
trials. Certain aspects of the contraceptive requirements
for such studies do not appear to have been sufficiently
considered, including the fact that hormonal contracep-
tion may interfere with pharmacokinetics or even pharma-
codynamics [3]. In this context, it is important to
remember that sexual hormone receptors behave as tran-
scription factors [4] and that oral contraceptives (OCs)
change the endogenous milieu by varying the activity of
the pituitary-ovarian [5] and hypothalamus-pituitary-adre-
nal axes [6]. In addition, OCs can induce subclinical
abnormalities in carbohydrate metabolism [7,8], can mod-
ify lipid metabolism [9], and are associated with elevation
of C-reactive protein [10]. OCs decrease symmetric
methylarginine and asymmetric dimethylarginine [11], the
latter being an inhibitor of nitric oxide and an index of
endothelial dysfunction [12]. OC-induced variations may
increase the risk of venous thromboembolism [13,14] and
elevate the prevalence of atherosclerosis and its complica-
tions in young, apparently healthy women [15,16].
Macrophages play crucial roles in atherosclerosis and

immunity [17,18] and are uniquely dependent on the milieu
to which they are exposed [19], which, as already men-
tioned, can in turn be modified by OCs [5,6,9-11,13,14].
Importantly, monocyte-derived macrophages (MDMs)
express estrogen and androgen receptors [20].
Therefore, we assumed that the variation of internal

milieu induced by OCs may affect the function of
macrophages. For this reason we studied the influence
of OCs on MDM function including the expression and
the activity of estrogen and androgen receptors, together
with the typical macrophage function of release of
tumor necrosis factor a (TNFa) and total DNA methy-
lation in blood cells. We selected combined OCs, which
are the most commonly used birth control methods
across the world [21], and also considered the andro-
genic or non-androgenic properties of progestin [22].

Results
Evaluation of the effect of OCs on routine hematological
and biochemical tests
Women who had not used OCs for at least 3 months to
ensure a sufficient washout period (Fs) and women trea-
ted with OCs for at least 3 months (FOCs) were

matched for weight, body mass index and age (Table 1).
As previously reported [10,23-26], FOCs had higher
number of lymphocytes and higher levels of iron, total
iron-binding capacity of transferrin, triglycerides, high-
density lipoprotein, total cholesterol, and C-reactive pro-
tein than non-users, whereas prothrombin time and
alkaline phosphatase were less than in Fs (data not
shown).
When FOCs were stratified as a function of the andro-

genic (FOCA+) and non-androgenic (FOCA-) properties
of the progestins, we observed that white blood cell
count, hemoglobin, high-density lipoprotein and calcium
were higher in FOCA- than in FOCA+, whereas percen-
tage saturation and g-glutamyl transpeptidase were
lower in FOCA- than in FOCA+, indicating that these
parameters are influenced by the androgenic properties
of progestin. Finally, triglycerides tended to be higher in
FOCA- than in FOCA+ (Table 1).
Red blood cell count, hematocrit, mean corpuscular

volume, ferritin, and the numbers of neutrophils, mono-
cytes, eosinophils, basophils and platelets did not pre-
sent any significant differences between Fs and FOCs or
between FOCA- and FOCA+ (data not shown).

Hormonal parameters
Hormonal statuses are shown in Table 2. FOCs, as
expected, had lower testosterone, luteinizing hormone,
and follicle-stimulating hormone; estradiol in many
cases was under the detection limit. Cortisol was signifi-
cantly higher in FOCs than in Fs. Finally, thyroid-stimu-
lating hormone was significantly higher in FOCA- than
in FOCA+, although it did not significantly differ
between Fs and FOCs.

Endothelial function
Asymmetric dimethylarginine and arginine were lower
in FOCs than in Fs, whereas the asymmetric dimethylar-
ginine/arginine ratio was higher in FOCs than in Fs.
Finally, symmetric dimethylarginine was similar between
Fs and FOCs. Consequently, the asymmetric dimethylar-
ginine/symmetric dimethylarginine ratio was decreased
in FOCs, whereas the asymmetric dimethylarginine/argi-
nine ratio was increased in FOCs (Table 3). Importantly,
these variations were independent of the androgenic
properties of progestin.

Oxidative and inflammatory parameters
Because variations in redox state have been implicated
in many diseases, we investigated oxidative stress
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Table 1 Main characteristics of each subgroup of females

Characteristic Fs (n = 85) FOCs (n = 77) P
value

FOCA+ (n = 33) FOCA to (n = 44) P
value

Age (years) 27.0 (18.0 to 40.0) 27.0 (20.0 to 39.0) NS 28.0 (20.0 to 39.0) 26.0 (20.0 to 39.0) NS

Weight (kg) 53.0 (38.0 to 78.0) 54.0 (43.0 to 75.0) NS 54.0 (45.0 to 70.0) 55.0 (43.0 to 75.0) NS

Body mass index (kg/cm2) 20.2 (17.0 to 28.0) 21.0 (17.0 to 28.0) NS 21.5 ± 2.1 21.1 ± 2.4 NS

Hemoglobin (g/dl) 12.7 ± 1.1 12.6 ± 1.0 NS 12.4 ± 1.0 12.8 ± 0.9 0.044

Saturation (%) 24.8 ± 11.5, n = 63 22.8 ± 10.2, n = 62 NS 25.1 (3.7 to 44.5) 16.0 (5.5 to 51.9) 0.005

White blood cells (109 cells/l) 6.5 (3.62 to 11.7) 6.8 (4.1 to 12.9) NS 6.4 ± 1.6 7.1 ± 1.4 0.031

High-density lipoprotein (mg/dl) 60.9 ± 11.2 69.3 ± 13.5 < 0.001 65.0 ± 11.6 72.6 ± 14.1 0.014

Low-density lipoprotein (mg/dl) 108.5 (68.0 to 166.0) 111.0 (35.0 to 229.0) NS 114.5 (70.0 to 229.0) 108.5 (35.0 to 193.0) NS

High-density/low-density
lipoprotein

0.6 (0.3 to 1.3) 0.6 (0.2 to 2.0) NS 0.6 (0.2 to 0.9) 0.6 (0.3 to 2.0) NS

Triglycerides (mg/dl) 68.0 (33.0 to 205.0) 90.5 (42.0 to 236.0) < 0.001 83.0 (42.0 to 174.0) 99.5 (48.0 to 236.0) NS

Glycaemia (mg/dl) 76.0 (30.0 to 110.0) 77.0 (50.0 to 93.0) NS 73.7 ± 9.4 77.6 ± 8.3 NS

Creatinine (mg/dl) 0.7 (0.6 to 0.9) 0.7 (0.6 to 1.0) NS 0.7 (0.6 to 1.0) 0.71 (0.62 to 0.87) NS

Creatinine clearance (ml/min) 101.9 ± 16.3 102.3 ± 14.6 NS 99.92 ± 14.23 104.08 ± 14.88 NS

Uric acid (mg/dl) 3.6 ± 0.9 3.4 ± 0.8 NS 3.3 ± 0.9 3.4 ± 0.8 NS

Urea (mg/dl) 27.5 (14.8 to 55.1) 28.4 (18.4 to 47.2) NS 29.7 ± 7.8 28.8 ± 6.1 NS

Total bilirubin (mg/dl) 0.5 (0.2 to 2.1) 0.4 (0.10 to 1.9) < 0.001 0.5 (0.1 to 0.9) 0.4 (0.2 to 1.93) NS

Alkaline phosphatase (U/l) 59.0 (38.0 to 115.0) 55.0 (34.0 to 99.0) 0.029 53.4 ± 10.1 56.9 ± 14.6 NS

Aspartate aminotransferase (U/l) 19.0 (12.0 to 39.0) 18.0 (10.0 to 60.0) NS 18.0 (11.0 to 29.0) 18.0 (10.0 to 60.0) NS

Alanine aminotransferase (U/l) 17.0 (6.0 to 64.0) 15.0 (6.0 to 38.0) NS 15.0 (6.0 to 38.0) 15.0 (7.0 to 31.0) NS

g-Glutamyl transpeptidase (U/l) 15.0 (7.0 to 98.0) 14.0 (7.0 to 34.0) 0.018 15.0 (7.0 to 30.0) 12.0 (7.0 to 34.0) 0.024

Calcium (mg/dl) 9.4 (8.3 to 10.4) (80) 9.4 (8.4 to 10.1) NS 9.2 ± 0.4 9.5 ± 0.4 0.003

Sodium (mEq/l) 140.0 (134.0 to 146.0) 140.0 (135.0 to 147.0) NS 140.0 (135.0 to
147.0)

140.0 (136.0 to
144.0)

NS

Potassium (mEq/l) 4.1 (3.5 to 4.8) 4.10 (3.5 to 6.9) NS 4.10 (3.6 to 6.9) 4.1 (3.5 to 4.8) NS

Prothrombin time (s) 10.7 (9.8 to 11.3), n =
71

10.4 (9.6 to 11.6), n =
68

< 0.001 10.6 ± 0.3, n = 28 10.4 ± 0.4, n = 40 NS

Data are expressed as the mean ± SD or as medians and ranges; n indicates the number of subjects used to calculate the statistics, and these may vary due to
the unavailability of enough plasma to complete the analyses.

NS = not significant.

Table 2 Hormonal status of each subgroup of females

Hormone Fs FOCs P
value

FOCA+ FOCA- P
value

Cortisol (ng/ml) 202.5 (75.5 to 373.1), n
= 44

334.2 (177.0 to 584.9), n
= 32

<
0.001

318.0 ± 76.6, n = 16 349.4 ± 98.2, n = 16 NS

Estradiol (pg/ml) 27.7 (6.6 to 172.0), n =
42

19.7 (5.5 to 77.0)a, n = 9 NS 35.1 ± 30.9, n = 4 25.9 ± 20.7, n = 5 NS

Testosterone (ng/dl) 49.9 ± 19.2, n = 33 33.9 ± 14.9, n = 27 <
0.001

31.4 ± 7.3, n = 13 36.2 ± 19.3, n = 14 NS

Luteinizing hormone (mIU/ml) 6.7 (2.6 to 16.5), n = 44 3.7 (0.2 to 10.4), n = 32 <
0.001

2.2 (0.2 to 10.4), n =
16

4.4 (0.2 to 9.6), n =
16

NS

Follicle-stimulating hormone
(mIU/ml)

6.8 (2.8 to 10.7), n = 44 5.6 (1.2 to 20.2), n = 32 0.001 4.9 (1.5 to 8.5), n =
16

4.3 (1.2 to 20.2), n =
16

NS

Thyroid-stimulating hormone
(μIU/ml)

1.7 (0.7 to 4.7), n = 79 1.9 (0.7 to 10.9), n = 76 NS 1.4 (0.7 to 10.9), n =
32

2.0 (0.8 to 6.3), n =
44

0.030

Data are expressed as the mean ± SD or as medians and ranges; n indicates the number of subjects used to calculate the statistics, and these may vary due to
the unavailability of enough serum to complete the analyses.
aIn many samples of oral contraceptive users, estradiol was below the detection limit (5 pg/ml), so they were excluded.

FOCA+/FOCA- = FOCs further stratified as a function of androgenic (FOCA+) and non-androgenic (FOCA-) properties of progestins; FOCs = women treated with
OCs for at least 3 months; Fs = women who had not used OCs for at least 3 months to ensure a sufficient washout period; NS = not significant; OC = oral
contraceptive.
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parameters. Malonyldialdehyde, an index of lipid peroxi-
dation, was not significantly different among the groups
(Table 4), whereas total bilirubin was lower in FOCs
than in Fs (Table 1). Among plasma thiols, cysteine was
significantly lower in FOCs than in Fs, while homocys-
teine, glutathione, cysteinglycine, glucylcysteine and
taurine, an endogenous inhibitor of hypochlorous acid
[27], were not different (Table 4). Moreover, none of the
above parameters was influenced by the androgenic
properties of progestin (Table 4).

Global DNA methylation
Global DNA methylation was measured in white blood
cells and expressed as percentage methylcytosine nor-
malized to white blood cell number. Methylation was
significantly higher in FOCs than in Fs (Figure 1), but
the androgenic properties of progestin did not affect
this parameter (data not shown).

Expression and activities of estrogen and androgen
receptors in MDMs obtained from different female
populations
MDMs expressed androgen receptors, estrogen receptor
a, and estrogen receptor b (Figure 2), with the b

isoform being the most highly expressed, as indicated
comparing the estrogen receptor b band with the band
obtained by loading 5 ng of recombinant proteins. Con-
sequently, MDMs presented a low estrogen receptor a/
estrogen receptor b ratio. The use of OCs had a consid-
erable impact on estrogen receptor levels: they increased
estrogen receptor a approximately fivefold and
decreased estrogen receptor b approximately 0.5-fold in
comparison with Fs. This effect led to a significant
increase in the estrogen receptor a/estrogen receptor b
ratio in MDMs derived from FOCs compared to Fs (Fig-
ure 2). When the FOCs were stratified according to the
androgenic and non-androgenic properties of progestin,
we observed that estrogen receptor a and estrogen
receptor b levels were at least twice as high in FOCA+

than in FOCA-. Consequently, the a/b ratio was signifi-
cantly higher in FOCA- than in FOCA+ (Figure 2). The
result obtained in FOCs prompted us to investigate
whether the altered levels of estrogen receptor isoforms
were paralleled by differences in their activation statuses
by measuring the phosphorylation of estrogen receptor
a Ser118 and the activation of p38 as a measure of
estrogen receptor b activity [28,29]. The phosphorylated
form of estrogen receptor a was undetectable in our

Table 3 Plasma arginine and plasma methylated arginine

Arginine type Fs, n = 72 FOCs, n = 67 P
value

FOCA+, n = 28 FOCA-, n = 39 P
value

Arginine (μM) 77.4 ± 15.5 55.7 ± 13.9 <
0.001

55.97 ± 13.86 55.52 ± 14.04 NS

Asymmetric dimethylarginine (μM) 0.5 (0.3 to 0.8) 0.4 (0.3 to 0.7) <
0.001

0.44 ± 0.13 0.41 ± 0.11 NS

Symmetric dimethylarginine (μM) 0.4 (0.2 to 0.7) 0.4 (0.2 to 0.6) NS 0.43 ± 0.09 0.40 ± 0.10 NS

Asymmetric dimethylarginine/asymmetric
dimethylarginine

1.2 (0.7 to 1.9) 1.0 (0.6 to 2.4) <
0.001

1.0 (0.6 to 2.0) 0.9 (0.6 to 2.4) NS

Asymmetric dimethylarginine/arginine 0.006 (0.004 to
0.01)

0.007 (0.004 to
0.01)

0.026 0.008 (0.004 to
0.01)

0.007 (0.004 to
0.01)

NS

Data are expressed as the mean ± SD or as medians and ranges; n indicates the number of samples used to calculate the statistics.

FOCA+/FOCA- = FOCs further stratified as a function of androgenic (FOCA+) and non-androgenic (FOCA-) properties of progestins; FOCs = women treated with
OCs for at least 3 months; Fs = women who had not used OCs for at least 3 months to ensure a sufficient washout period; NS = not significant; OC = oral
contraceptive.

Table 4 Plasma lipid peroxidation, thiols and taurine

Type Fs, n = 72 FOCs, n = 67 P value FOCA+, n = 28 FOCA-, n = 39 P value

Malonyldialdehyde (μM) 4.2 ± 1.9, n = 69 4.1 ± 1.7, n = 66 NS 3.7 (1.3 to 8.6), n = 27 3.9 (0.9 to 8.6), n = 39 NS

Homocysteine (μM) 8.7 (4.0 to 41.1) 8.3 (4.3 to 16.7) NS 8.3 ± 2.9 8.9 ± 2.9 NS

Cysteine (μM) 195.6 (118.9 to 350.7) 176.6 (115.8 to 318.4) 0.003 181.5 ± 39.8 186.6 ± 45.4 NS

Cysteinglycine (μM) 18.7 (7.6 to 33.6) 19.5 (7.4 to 38.8) NS 20.6 (11.4 to 38.8) 18.9 (7.4 to 33.0) NS

Glucylcysteine (μM) 4.5 ± 1.0 4.5 ± 0.9 NS 4.4 ± 1.0 4.5 ± 0.9 NS

Glutathione (μM) 7.4 (2.7 to 14.8) 8.0 (3.9 to 14.9) NS 8.0 ± 2.4 8.2 ± 2.0 NS

Taurine (μM) 64.1 (31.7 to 202.7) 59.6 (27.3 to 158.9) NS 60.9 (27.3 to 146.8) 59.4 (36.3 to 158.9) NS

Data are expressed as the mean ± SD or as medians and ranges; n indicates the number of samples used to calculate the statistics.

FOCA+/FOCA- = FOCs further stratified as a function of androgenic (FOCA+) and non-androgenic (FOCA-) properties of progestins; FOCs = women treated with
OCs for at least 3 months; Fs = women who had not used OCs for at least 3 months to ensure a sufficient washout period; NS = not significant; OC = oral
contraceptive.
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samples, indicating that this receptor was inactive,
whereas estrogen receptor a phosphorylation was evi-
dent in MCF-7 cells (used as a positive control). The
phosphorylation of p38, and thus estrogen receptor b
activation, was decreased in MDMs obtained from
FOCs compared to Fs, indicating that OCs not only
decreased the level but also the activity of estrogen
receptor b (Figure 3). Finally, the levels of androgen
receptors were not changed by the use of OCs, indicat-
ing that OCs have a specific impact on estrogen recep-
tor levels and activities (Figure 2).

Basal and lipopolysaccharide-induced release of TNFa
from MDMs obtained from different female populations
Estrogens influence the inflammatory response through
several mechanisms, including cytokine suppression
[30]. This prompted us to evaluate if modifications in
serum estrogen levels and in estrogen receptor expres-
sion were associated with changes in basal and lipopoly-
saccharide-induced release of TNFa. Despite the great
variability in the basal release of TNFa, we found that
basal cytokine release was consistently significantly
higher in FOCs than in the Fs (Table 5). The release of
TNFa was increased by lipopolysaccharide in all groups
and was significantly higher in Fs than in FOCs. The
androgenic properties of progestin did not influence
release of TNFa.

Discussion
OCs modify the pituitary-ovarian axis (decreased lutei-
nizing hormone, follicle-stimulating hormone, testoster-
one and estradiol), which is characteristic of the
inhibition of ovulation [31,32]. The pituitary-adrenal

axis (increased cortisol) is also altered by OCs and this
results is in line with previous findings [6,33].
Thyroid-stimulating hormone levels were not signifi-

cantly different between Fs and FOCs. However, when
FOCA- and FOCA+ were considered, thyroid-stimulating
hormone was elevated in FOCA-. Our results are in line
with those observed by Wiegratz et al. , who reported
that thyroid-stimulating hormone was significantly
increased with the use of OCs containing a non-andro-
genic progestin [34].
We also confirmed that OCs induced variations in

hematological and biochemical parameters, such as lym-
phocyte count, prothrombin time, total iron binding
capacity of transferrin, C-reactive protein, and lipids
[10,23-25]. Some parameters were influenced by the
androgenic properties of progestin: high-density lipopro-
teins were higher in FOCA-, in accord with the findings
of van Rooijen et al. [26], while hemoglobin, white
blood cell count, calcium, percentage saturation and g-
glutamyl transpeptidase were lower in FOCA-, as pre-
viously reported [35].
The primary novelty of our study is the fact that OCs

modified estrogen receptor a and estrogen receptor b
levels, and estrogen receptor b activity, while leaving
androgen receptor expression unchanged. In particular,
estrogen receptor a was markedly increased, whereas
estrogen receptor b was largely decreased; consequently,
the ratio of a/b was greatly altered. The variations in
estrogen receptor levels were associated with changes in
the activation status only of estrogen receptor b. In fact,
estrogen receptor a activity was undetectable in all
groups, indicating that this receptor is not active in
basal conditions. Conversely, p38 phosphorylation, an
important step in estrogen receptor b signal transduc-
tion [4], was significantly lower in FOCs than in Fs.
Importantly, the androgenic and non-androgenic prop-
erties of progestin affected only the expression of the b
isoform.
OC-induced modification of hormonal levels and the

estrogen receptor a/estrogen receptor b ratio was
accompanied by a significant increase in basal release of
TNFa. When the ratio between the two estrogen recep-
tors was the highest, we observed the greatest release of
TNFa. Interestingly, these data strongly suggest that
MDMs retain a selective ‘memory’ of their in vivo envir-
onment. They also suggest that FOCs who also had high
C-reactive protein levels are more prone to inflamma-
tion. In this context, it is important to remember that
FOCs had higher cortisol levels, which could impact
release of TNFa. It should be noted that lipopolysac-
charide-induced release of TNFa was higher in Fs and
that Fs had lower cortisol and higher estradiol. The
influence of sex hormones on release of TNFa has been
suggested by Amory et al. [36], and recently a direct

Figure 1 Global DNA methylation in the two female
populations. Data are expressed as the medians of 72 Fs (white
bar) and 67 FOCs (grey bar); *P = 0.033. FOCs = women treated
with OCs for at least 3 months; Fs = women who had not used
OCs for at least 3 months to ensure a sufficient washout period; OC
= oral contraceptive.
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correlation between estrogen receptor a expression and
the suppression of lipopolysaccharide-induced CXCL8
secretion has been shown [20], but because estrogen
receptor a was not active in our samples, we believe
that the cortisol increase is of some importance. These
results are in line with the OC-induced modifications of
human T lymphocytes [37]. Notably, the release of cyto-
kines by macrophages and monocytes appears to be an
endocrine phenomenon. Generally, when estrogen is ele-
vated, resting peripheral blood monocytes release less
interleukin-1b and TNFa [38,39]. Moreover, monocytes
obtained from surgically postmenopausal women release

a higher amount of cytokines, and importantly, the
administration of estrogen restores premenopausal cyto-
kine levels [40]. When peripheral blood mononuclear
cells are stimulated with lipopolysaccharide, mRNA
expression and secretion of interleukin-1b and TNFa
are increased in the luteal phase compared with the fol-
licular phase [41].
Another important result of this study is the fact that

OCs ameliorate endothelial function, as indicated by
decreased asymmetric dimethylarginine. This marker of
endothelial function is also an independent predictor of
cardiovascular events and mortality [12]. Although the

Figure 2 Estrogen receptors and androgen receptor expression. Representative western blots and corresponding densitometric analyses of
estrogen receptor a (A, B) and estrogen receptor b levels (C, D), estrogen receptor a/estrogen receptor b ratio (E), and androgen receptor
levels (F). Panel A includes MCF-7 cells, which express estrogen receptor a, as positive control and monocyte-derived macrophages (MDMs). (B)
Includes DLD-1 cells, which express estrogen receptor b, as positive control and MDMs from Fs (white bar), FOCA+ (circle bar) and FOCA- (striped
bar). (F) Includes DU145 cells, which express androgen receptors, as positive control and MDMs. Data are expressed as the mean ± SD of at least
four independent experiments. *P < 0.05; **P < 0.001 vs Fs; ·P < 0.05 between FOCA+ and FOCA-; ··P < 0.001 between FOCA+ and FOCA-. AR =
androgen receptor; ERa = estrogen receptor a; ERb = estrogen receptor b; ERa/ERb = estrogen receptor a/estrogen receptor b ratio; FOCA
+/FOCA- = FOCs further stratified as a function of androgenic (FOCA+) and non-androgenic (FOCA-) properties of progestins; FOCs = women
treated with OCs for at least 3 months; Fs = women who had not used OCs for at least 3 months to ensure a sufficient washout period; OC =
oral contraceptive.

Campesi et al. Biology of Sex Differences 2012, 3:4
http://www.bsd-journal.com/content/3/1/4

Page 6 of 11



absolute reduction of this endogenous inhibitor of nitric
oxide synthase was small, the biological variation in the
plasma asymmetric dimethylarginine/arginine ratio is
also very low and even a slight increase in the asym-
metric dimethylarginine/arginine ratio is associated with
an elevated risk of acute coronary events [12]. The
reduction in the asymmetric dimethylarginine/arginine
ratio is in line with the results of Valtonen et al. [11].
Notably, the ratio increase was mainly sustained by a
decrease in arginine. The decrease in arginine is not a
universal finding [11], and the reasons for this

discrepancy are not well understood, but a decrease in
arginine has been reported after oral hormonal replace-
ment therapy [42].
The reduction in total DNA methylation in FOCs was

small but significant. Variations in DNA methylation
imply heritable epigenetic changes in gene function [42].
Notably, global hypomethylation predisposes to age-
related chronic diseases, including atherosclerosis
[43,44]. The global hypomethylation of DNA and reduc-
tion of asymmetric dimethylarginine occurred in the
presence of a significant variation of homocysteine; pre-
viously it has been shown that folate does not differ
between OC users and non-users [45], suggesting that
the decreases in asymmetric dimethylarginine and DNA
methylation are not attributable to a decrease in folate.
In our opinion, the low levels of cysteine and DNA
methylation suggest a slowdown during the demethyla-
tion and trans-sulfuration phases of the methionine
cycle, which can reasonably produce a decrease in asym-
metric dimethylarginine, although it is not possible to
exclude other mechanisms.
When the study population was stratified for OC use,

the results obtained were mainly in line with results in
the literature, indicating that the sample number was suf-
ficient to discriminate differences. Indeed, the further
stratification into FOCA+ and FOCA- groups might have
influenced the statistical power, and therefore, further
differences due to the activity of progestin may not have
been detected. Some information was self-reported data,
which contains several potential sources of bias. Another
caveat is the lack of randomization and the fact that the
study enrolled women who were treated with several
OCs that contained different progestin-based molecules
with androgenic and non-androgenic properties. How-
ever, the current study specifically focused on evaluating
factors related to MDM function in a real population and
whether function was affected by OC treatment, as well
as investigating whether OCs could also produce altera-
tions in cell functions, thereby affecting the pharmacody-
namics of the drugs under examination.

Figure 3 Activation status of estrogen receptors. Representative
western blot for estrogen receptor a phosphorylation (A) and
representative western blot with corresponding densitometric
analysis of estrogen receptor b activity (measured as p38
phosphorylation) (B, C) in estrogen receptor a-expressing MCF-7
and estrogen receptor b-expressing DLD-1 cell lines stimulated with
10 nM estradiol (1 h) and in monocyte-derived macrophages
(MDMs) from Fs (white bar), FOCA+ (circle bar) and FOCA- (striped
bar). Data are expressed as the mean ± SD of at least four
independent experiments. **P < 0.001 vs Fs. FOCA+/FOCA- = FOCs
further stratified as a function of androgenic (FOCA+) and non-
androgenic (FOCA-) properties of progestins; FOCs = women treated
with OCs for at least 3 months; Fs = women who had not used
OCs for at least 3 months to ensure a sufficient washout period; OC
= oral contraceptive.

Table 5 Release of tumor necrosis factor a in monocyte-derived macrophages (MDMs) obtained from each subgroup
of females

Subgroup Unstimulated (ng/ml) Lipopolysaccharide (% increase) P value

Fs, n = 76 67.4 (12.1 to 971.8) 2786.7 (323.6 to 29272.3) < 0.001a

FOCs, n = 68 93.8(14.7 to 702.5) 1694.3(476.6 to 15386.7) < 0.001a; < 0.02*

FOCA+, n = 33 90.5 (14.7 to 693.7) 1597.9 (507.3 to 10314.1) < 0.001a

FOCA-, n = 35 88.6 (15.8 to 702.5) 1977.8 (476.6 to 15386.7) < 0.001a

Data are medians and ranges; n indicates the number of samples used to calculate the statistics.
aIndicates the P value between unstimulated and stimulated MDMs.

*P value between FOCs and Fs.

FOCA+/FOCA- = FOCs further stratified as a function of androgenic (FOCA+) and non-androgenic (FOCA-) properties of progestins; FOCs = women treated with
OCs for at least 3 months; Fs = women who had not used OCs for at least 3 months to ensure a sufficient washout period; OC = oral contraceptive.
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Conclusions
In summary, these findings suggest that contraceptive
therapy impacts the function of cells (MDMs) that play
crucial roles in immunity and atherosclerosis [17,18],
modifying the release of TNFa. Notably, the androgenic
properties of progestin alter several properties of
MDMs. OCs modify total DNA methylation, and this
epigenetic change occurs independently of the andro-
genic properties of progestin. Considering that the pre-
paration of MDMs from monocytes requires 10 days, it
is also conceivable that the modifications induced by
OCs are long lasting. At the moment, it is not known
whether these effects are reversible.
Intuitively, these modifications could have a relevant

impact on pharmacological targets. The impact may be
different according to the androgenic properties of pro-
gestin. This implies that a single type of OC should be
used during a single trial, because the type of OC used
could influence the results of the designed study. We
are also confident that bringing attention to this pro-
blem could help to improve drug therapy in women,
who currently experience almost twice the number of
adverse events as men [3].

Methods
Ethics statement
The local ethical committee of Azienda Ospedaliero-
Universitaria of Sassari approved this study. Informed
consent taking and blood sampling were performed at a
voluntary blood donation session. Women willing to
donate blood were asked to donate during the follicular
phase of their menstrual cycle and informed that an ali-
quot of blood would be kept for the study. Blood chem-
istry tests were performed as a scheduled service for
blood donors.

Subjects
A total of 162 healthy adult women (85 non-users of
OCs and 77 OC users) with regular menstrual cycles
(28 days) aged 27 years (range 18 to 39) were enrolled
during the period July 2007 to November 2010 at the
Servizio di Diagnosi e Cura di Endocrinologia, Azienda
Ospedaliero-Universitaria, Sassari. Weight and height
were used to calculate body mass index. Women were
defined as healthy after a physical examination and after
blood chemistry analysis.
Women were free of kidney, liver, heart, and endo-

crine diseases and infective diseases for at least 2
months prior to the study and did not use chronic phar-
maceutical treatments, with the exception of OCs. The
population was stratified into two groups: Fs and FOCs,
as defined earlier. This was due to the fact some women
may need to change the type of OC in use to optimize

the anticonceptional therapy. FOCs were further strati-
fied as a function of the androgenic (FOCA+) and non-
androgenic (FOCA-) properties of the progestins. OCs
belonged to the new generation and contained ethinyles-
tradiol, for which the most representative dose was 20
μg (n = 42). The most used progestin dose was 3 mg (n
= 32); the androgenic progestins used were gestodene
(the most frequently used), desogestrel, and levonorges-
trel, whereas drospirenone and clormadinone have no
androgenic properties [22], with drospirenone used
most frequently.

Biochemical and hematological examinations
Laboratory assessments of several biomarkers were con-
ducted on 10 ml of fasting blood samples (8.00 am and
10.00 am) obtained from the antecubital vein of women
in the follicular phase of their menstrual cycle (1 to 10
days). Blood was put in tubes with the appropriate
anticoagulant (sodium citrate for coagulation, silicone
coating for serum determinations and potassium-ethyle-
nediaminetetra-acetic acid (EDTA) for all the other
assessments). Plasma was aliquoted, stored at -80°C and
used within 1 month to measure cysteine, homocysteine,
glutathione, cysteinglycine, glucylcysteine, arginine,
asymmetric dimethylarginine and symmetric dimethylar-
ginine according to the method of Zinellu et al. [46-48]
and to measure malonyldialdehyde according to the
method of Esterbauer and Cheeseman [49], with slight
modifications. Other plasma aliquots were immediately
used for measuring fasting glucose, total cholesterol,
low-density lipoproteins, high-density lipoproteins, tri-
glycerides, creatinine, uric acid, urea, total bilirubin,
aspartate aminotransferase, alanine aminotransferase, g-
glutamyl transpeptidase, alkaline phosphatase, calcium,
sodium, potassium, sideremia, ferritin, C-reactive pro-
tein, prothrombin time, total iron binding capacity of
transferrin and percentage saturation using standard
laboratory procedures. Full blood aliquots were used to
measure red cell count, leucocyte formula, platelet
count, hemoglobin, hematocrit, and mean corpuscular
volume. White blood cells were also used to determine
the degree of global DNA methylation as previously
described [50]. Aliquots of serum were also prepared to
measure hormones. In particular, cortisol (Cortisol RIA
CT, Chematil S.r.L., Angri, Italy), thyroid-stimulating
hormone (VITROS TSH, Ortho-Clinical Diagnostics
Johnson & Johnson, Roma, Italy), estradiol (Estradiol
MAIA, Adaltis Italia S.p.A., Bologna, Italy) and testoster-
one (Testosterone RIA CT, RADIM S.p.A, Pomezia,
Italy) were measured by RIA using commercial kits,
while luteinizing hormone (LH IRMA kit, Immunotech
a.s., Milano, Italy) and follicle-stimulating hormone
(FSH IRMA kit, Immunotech a.s.) were detected by
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IRMA using commercial kits. Intra-assay and interassay
coefficients of variation were less than 2.5%.

Human monocyte isolation and MDM differentiation
An aliquot of blood taken from healthy volunteers (30
ml) was used for the isolation of monocytes. Briefly,
blood was diluted with phosphate-buffered saline (pH
7.4), layered over a histopaque (density 1.077 g/cm3,
Sigma Aldrich, Milano, Italy) gradient solution, centri-
fuged (400 g, 25 min, room temperature (RT)) and recov-
ered by thin suction at the interface. The mononuclear
cell layer was washed twice by centrifuging with phos-
phate buffer (200 g, 10 min, RT) and then resuspended in
RPMI 1640 medium (Invitrogen, S. Giuliano Milanese,
Italy) supplemented with 20% heat-inactivated fetal
bovine serum (Invitrogen, S. Giuliano Milanese, Italy), 2
mM glutamine, 10 mM 4-(2-hydroxyethyl)-1-piperazine-
ethanesulfonic acid (HEPES, Sigma Aldrich, Milano,
Italy), and 1% antibiotic/antimycotic (Invitrogen, S. Giu-
liano Milanese, Italy). Purified monocytes were obtained
by adhesion; non-adherent cells (mainly lymphocytes)
were removed by gentle washes with phosphate buffer.
MDMs were prepared from monocytes cultured for 8 to
10 days in a 5% CO2 incubator at 37°C in RPMI 1640
medium containing 20% fetal bovine serum, 2 mM gluta-
mine, 10 mM HEPES and antibiotics/antimycotics; med-
ium was changed every 2 to 3 days. MDMs were
prepared and characterized as described [51].

Expression and activation status of estrogen receptor a,
estrogen receptor b and androgen receptor in MDMs
derived from different female populations
An aliquot of MDMs was lysed, seeded in six-well plates,
washed twice with ice-cold phosphate-buffered saline
(PBS) and scraped in lysis buffer (20 mM Tris-HCl (pH
7.5), 150 mM NaCl, 1 mM Na2EDTA, 1 mM ethylene gly-
col tetra-acetic acid (EGTA), 1% Triton X, 2.5 mM sodium
pyrophosphate, 1 mM b-glycerophosphate, 1 mM
Na3VO4, 1 μg/ml leupeptin and 1 mM phenylmethanesul-
fonylfluoride (PMSF), Sigma Aldrich, Milano, Italy). The
lysate was centrifuged (13,000 g; 10 min, 4°C); the super-
natants obtained were collected and stored at -80°C until
western blot analyses for estrogen receptor a, estrogen
receptor b and androgen receptor [29]. To measure estro-
gen receptor a and estrogen receptor b, electrophoreses
were performed in the presence of 5 ng of recombinant
estrogen receptor a and estrogen receptor b.
The activation states of estrogen receptors were evalu-

ated by analyzing the phosphorylation of Ser118 of
estrogen receptor a and the phosphorylation of p38 for
estrogen receptor b, according to [4]. Protein concentra-
tion was determined with the Pierce BCA protein assay
kit (Thermo Scientific, Celbio SPA, Pero, Italy). More-
over, a standard curve of recombinant proteins showed

that the band intensity was proportional to the protein
quantity. Antibody reaction was visualized with chemilu-
minescence Western Blotting Detection Reagent (Amer-
sham Biosciences, Little Chalfont, UK). Densitometric
analyses were performed with ImageJ software for Win-
dows http://rsbweb.nih.gov/ij/.

Spontaneous and lipopolysaccharide-induced release of
TNFa from MDMs derived from different female
populations
MDMs (1.4 × 104) were incubated for 24 h in the
absence or presence of 100 ng/ml lipopolysaccharide
(Sigma Aldrich, Milano, Italia), a component of Gram-
negative bacterial cell walls, that binds to Toll-like
receptor 4 [52]. Supernatants were then collected and
stored at -80°C and used to measure TNFa using a
commercial ELISA kit (human TNFa/TNFSF1A DuoSet
ELISA kit, R&D Systems, Milano, Italy) following the
manufacturer’s instructions.

Statistical analysis
Statistical analysis was performed by comparing Fs ver-
sus FOCs and FOCA+ versus FOCA-. Continuous para-
metric variables were analyzed using the Student’s t test.
Non-parametric variables were compared between
groups by the Mann-Whitney rank test. For all tests, a P
value ≤ 0.05 was considered statistically significant.
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